Loading…
Autonomic neuromodulation for cardiomyopathy associated with metabolic syndrome - Prevention of precursors for heart failure with preserved ejection fraction
Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympat...
Saved in:
Published in: | Hypertension research 2024-12, Vol.47 (12), p.3318-3329 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metabolic syndrome (MetS) induces a systemic inflammatory state which can lead to cardiomyopathy, manifesting clinically as heart failure (HF) with preserved ejection fraction (HFpEF). MetS components are intricately linked to the pathophysiologic processes of myocardial remodeling. Increased sympathetic nervous system activity, which is noted as an upstream factor of MetS, has been linked to adverse myocardial structural changes. Since renal denervation and vagus nerve stimulation have a sympathoinhibitory effect, attention has been paid to the cardioprotective effects of autonomic neuromodulation. In this review, the pathophysiology underlying the relationship between MetS and HF is elucidated, and the evidence regarding autonomic neuromodulation in HFpEF is summarized. |
---|---|
ISSN: | 0916-9636 1348-4214 1348-4214 |
DOI: | 10.1038/s41440-024-01886-2 |