Loading…

Singlet–Triplet Inversion in Triangular Boron Carbon Nitrides

The discovery of singlet–triplet (ST) inversion in some π-conjugated triangle-shaped boron carbon nitrides is a remarkable breakthrough that defies Hund’s first rule. Deeply rooted in strong electron–electron interactions, ST inversion has garnered significant interest due to its potential to revolu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2024-10, Vol.20 (19), p.8634-8643
Main Authors: Bedogni, Matteo, Di Maiolo, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The discovery of singlet–triplet (ST) inversion in some π-conjugated triangle-shaped boron carbon nitrides is a remarkable breakthrough that defies Hund’s first rule. Deeply rooted in strong electron–electron interactions, ST inversion has garnered significant interest due to its potential to revolutionize triplet harvesting in organic LEDs. Using the well-established Pariser–Parr–Pople model for correlated electrons in π-conjugated systems, we employ a combination of CISDT and restricted active space configuration interaction calculations to investigate the photophysics of several triangular boron carbon nitrides. Our findings reveal that ST inversion in these systems is primarily driven by a network of alternating electron-donor and electron-acceptor groups in the molecular rim, rather than by the triangular molecular structure itself.
ISSN:1549-9618
1549-9626
1549-9626
DOI:10.1021/acs.jctc.4c00706