Loading…
Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices
This paper presents experimental performance of solar drying of rosella flower and chili using roof-integrated solar dryer and also presents modelling of the roof-integrated solar dryer for drying of chili. Field-level tests for deep bed drying of rosella flower and chili demonstrated that drying in...
Saved in:
Published in: | Energy (Oxford) 2008, Vol.33 (1), p.91-103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents experimental performance of solar drying of rosella flower and chili using roof-integrated solar dryer and also presents modelling of the roof-integrated solar dryer for drying of chili. Field-level tests for deep bed drying of rosella flower and chili demonstrated that drying in the roof-integrated solar dryer results in significant reduction in drying time compared to the traditional sun drying method and the dry product is a quality dry product compared to the quality products in the markets. The payback period of the roof-integrated solar dryer is about 5 years. To simulate the performance of the roof-integrated solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors, two sets of equations were developed. The first set of equations was solved implicitly and the second set of equations was solved explicitly using finite difference technique. The simulated air temperatures at the collector outlet agreed well with the observed air temperatures. Good agreement was also found between experimental and simulated moisture contents. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2007.08.009 |