Loading…

Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices

This paper presents experimental performance of solar drying of rosella flower and chili using roof-integrated solar dryer and also presents modelling of the roof-integrated solar dryer for drying of chili. Field-level tests for deep bed drying of rosella flower and chili demonstrated that drying in...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2008, Vol.33 (1), p.91-103
Main Authors: Janjai, S., Srisittipokakun, N., Bala, B.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents experimental performance of solar drying of rosella flower and chili using roof-integrated solar dryer and also presents modelling of the roof-integrated solar dryer for drying of chili. Field-level tests for deep bed drying of rosella flower and chili demonstrated that drying in the roof-integrated solar dryer results in significant reduction in drying time compared to the traditional sun drying method and the dry product is a quality dry product compared to the quality products in the markets. The payback period of the roof-integrated solar dryer is about 5 years. To simulate the performance of the roof-integrated solar dryer for drying herbs and spices using hot air from roof-integrated solar collectors, two sets of equations were developed. The first set of equations was solved implicitly and the second set of equations was solved explicitly using finite difference technique. The simulated air temperatures at the collector outlet agreed well with the observed air temperatures. Good agreement was also found between experimental and simulated moisture contents.
ISSN:0360-5442
DOI:10.1016/j.energy.2007.08.009