Loading…
Pharmacokinetic analysis of nicotine and its metabolites (cotinine and trans-3′-hydroxycotinine) in male Sprague-Dawley rats following nose-only inhalation, oral gavage, and intravenous infusion of nicotine
Abstract Nicotine is an alkaloid found in tobacco. Human exposure to nicotine primarily occurs through the use of tobacco products. To date, limited nicotine pharmacokinetic data in animals have been reported. This study exposed male Sprague-Dawley rats to vehicle (and/or air) or 4 doses of nicotine...
Saved in:
Published in: | Toxicological sciences 2024-12, Vol.202 (2), p.196-209 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c214t-310fc436818e5830fac09b99a6fcc8081daa1b02bd6e264b1df683da7a2b3fb03 |
container_end_page | 209 |
container_issue | 2 |
container_start_page | 196 |
container_title | Toxicological sciences |
container_volume | 202 |
creator | Tang, Yunan Bryant, Matthew S Li, Miao Min, Seonggi Pellar, Gregory Wu, Qiangen Yang, Dong-Jin Kang, Hyun-Ki Sepehr, Estatira He, Xiaobo McLellen, Florence Lewis, Sherry M Greenhaw, James Fisher, Jeffrey Yang, Xiaoxia Chemerynski, Susan Yee, Steven B Rosenfeldt, Hans Yeager, R Philip Howard, Paul C Hu, Shu-Chieh Roqué, Pamela Goel, Reema Kc, Prabha Yi, Jinghai |
description | Abstract
Nicotine is an alkaloid found in tobacco. Human exposure to nicotine primarily occurs through the use of tobacco products. To date, limited nicotine pharmacokinetic data in animals have been reported. This study exposed male Sprague-Dawley rats to vehicle (and/or air) or 4 doses of nicotine via nose-only inhalation (INH), oral gavage (PO), and intravenous (IV) infusion. Plasma, 6 tissues (brain, heart, lung, liver, kidney, and muscle), and urine were collected at multiple timepoints from 5 min to 48 h post-dose. The concentrations of nicotine, cotinine, and trans-3′-hydroxycotinine (3-OH-cotinine) were determined, and the pharmacokinetic profiles were compared among the 4 doses for each route. The results indicated that after single nicotine dose, nicotine bioavailability was 53% via PO. Across all the administration routes and doses, nicotine was quickly distributed to all 6 tissues; kidney had the highest nicotine and cotinine levels, and the lung had the highest 3-OH-cotinine levels; nicotine was metabolized extensively to cotinine and cotinine was metabolized to a lesser extent to 3-OH-cotinine; the elimination of plasma nicotine, cotinine, and 3-OH-cotinine followed first-order kinetics; plasma nicotine had a shorter half-life than cotinine or 3-OH-cotinine; the half-lives of plasma nicotine, cotinine, and 3-OH-cotinine were dose- and route-independent; and nicotine and cotinine were major urinary excretions followed by 3-OH-cotinine. Nicotine, cotinine, and 3-OH-cotinine levels in plasma, tissues, and urine exhibited dose-dependent increases. These study findings improve our understanding of the pharmacokinetics of nicotine, cotinine, and 3-OH-cotinine across different routes of exposure. |
doi_str_mv | 10.1093/toxsci/kfae120 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104536616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/toxsci/kfae120</oup_id><sourcerecordid>3104536616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-310fc436818e5830fac09b99a6fcc8081daa1b02bd6e264b1df683da7a2b3fb03</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEoqVw5Yh8bKWmHcdbNzmiFihSpSIB52jijHdNHXuxnba58Ux9kj4DT1JDdlFvnDya__M_v_QXxVsORxwacZz8XVTm-Foj8QqeFbt5K0toqub5ZpZQw07xKsYfAJxLaF4WO6KpTgFktVs8fFlhGFD5a-MoGcXQoZ2iicxr5ozyKe_zsmcmRTZQws5bkyiy_b_aVk0BXSzF71_35Wrqg7-btvIBM44NaIl9XQdcjlSe462liQXMjtpb62-NWzLnI5Xe2SnzK7SYjHeHzAe0bIk3uKTDOYbLp27I-THmWY8xY0-zvi5eaLSR3mzeveL7xw_fzi7Ky6tPn8_eX5aq4otUCg5aLYSseU0ntQCNCpquaVBqpWqoeY_IO6i6XlIlFx3vtaxFj6dYdUJ3IPaK_dl3HfzPkWJqBxMVWYuOcrY2H1icCCm5zOjRjKrgYwyk23UwA4ap5dD-abGdW2w3LeYP7zbeYzdQ_w_f1paBgxnw4_p_Zo8v97B9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104536616</pqid></control><display><type>article</type><title>Pharmacokinetic analysis of nicotine and its metabolites (cotinine and trans-3′-hydroxycotinine) in male Sprague-Dawley rats following nose-only inhalation, oral gavage, and intravenous infusion of nicotine</title><source>Oxford Journals Online</source><creator>Tang, Yunan ; Bryant, Matthew S ; Li, Miao ; Min, Seonggi ; Pellar, Gregory ; Wu, Qiangen ; Yang, Dong-Jin ; Kang, Hyun-Ki ; Sepehr, Estatira ; He, Xiaobo ; McLellen, Florence ; Lewis, Sherry M ; Greenhaw, James ; Fisher, Jeffrey ; Yang, Xiaoxia ; Chemerynski, Susan ; Yee, Steven B ; Rosenfeldt, Hans ; Yeager, R Philip ; Howard, Paul C ; Hu, Shu-Chieh ; Roqué, Pamela ; Goel, Reema ; Kc, Prabha ; Yi, Jinghai</creator><creatorcontrib>Tang, Yunan ; Bryant, Matthew S ; Li, Miao ; Min, Seonggi ; Pellar, Gregory ; Wu, Qiangen ; Yang, Dong-Jin ; Kang, Hyun-Ki ; Sepehr, Estatira ; He, Xiaobo ; McLellen, Florence ; Lewis, Sherry M ; Greenhaw, James ; Fisher, Jeffrey ; Yang, Xiaoxia ; Chemerynski, Susan ; Yee, Steven B ; Rosenfeldt, Hans ; Yeager, R Philip ; Howard, Paul C ; Hu, Shu-Chieh ; Roqué, Pamela ; Goel, Reema ; Kc, Prabha ; Yi, Jinghai</creatorcontrib><description>Abstract
Nicotine is an alkaloid found in tobacco. Human exposure to nicotine primarily occurs through the use of tobacco products. To date, limited nicotine pharmacokinetic data in animals have been reported. This study exposed male Sprague-Dawley rats to vehicle (and/or air) or 4 doses of nicotine via nose-only inhalation (INH), oral gavage (PO), and intravenous (IV) infusion. Plasma, 6 tissues (brain, heart, lung, liver, kidney, and muscle), and urine were collected at multiple timepoints from 5 min to 48 h post-dose. The concentrations of nicotine, cotinine, and trans-3′-hydroxycotinine (3-OH-cotinine) were determined, and the pharmacokinetic profiles were compared among the 4 doses for each route. The results indicated that after single nicotine dose, nicotine bioavailability was 53% via PO. Across all the administration routes and doses, nicotine was quickly distributed to all 6 tissues; kidney had the highest nicotine and cotinine levels, and the lung had the highest 3-OH-cotinine levels; nicotine was metabolized extensively to cotinine and cotinine was metabolized to a lesser extent to 3-OH-cotinine; the elimination of plasma nicotine, cotinine, and 3-OH-cotinine followed first-order kinetics; plasma nicotine had a shorter half-life than cotinine or 3-OH-cotinine; the half-lives of plasma nicotine, cotinine, and 3-OH-cotinine were dose- and route-independent; and nicotine and cotinine were major urinary excretions followed by 3-OH-cotinine. Nicotine, cotinine, and 3-OH-cotinine levels in plasma, tissues, and urine exhibited dose-dependent increases. These study findings improve our understanding of the pharmacokinetics of nicotine, cotinine, and 3-OH-cotinine across different routes of exposure.</description><identifier>ISSN: 1096-6080</identifier><identifier>ISSN: 1096-0929</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfae120</identifier><identifier>PMID: 39270062</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Administration, Inhalation ; Administration, Oral ; Animals ; Biological Availability ; Cotinine - analogs & derivatives ; Cotinine - blood ; Cotinine - pharmacokinetics ; Cotinine - urine ; Half-Life ; Infusions, Intravenous ; Male ; Nicotine - administration & dosage ; Nicotine - analogs & derivatives ; Nicotine - blood ; Nicotine - pharmacokinetics ; Nicotine - urine ; Rats ; Rats, Sprague-Dawley ; Tissue Distribution</subject><ispartof>Toxicological sciences, 2024-12, Vol.202 (2), p.196-209</ispartof><rights>Published by Oxford University Press on behalf of the Society of Toxicology 2024. 2024</rights><rights>Published by Oxford University Press on behalf of the Society of Toxicology 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-310fc436818e5830fac09b99a6fcc8081daa1b02bd6e264b1df683da7a2b3fb03</cites><orcidid>0000-0003-1831-5548 ; 0000-0003-3144-3421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39270062$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yunan</creatorcontrib><creatorcontrib>Bryant, Matthew S</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Min, Seonggi</creatorcontrib><creatorcontrib>Pellar, Gregory</creatorcontrib><creatorcontrib>Wu, Qiangen</creatorcontrib><creatorcontrib>Yang, Dong-Jin</creatorcontrib><creatorcontrib>Kang, Hyun-Ki</creatorcontrib><creatorcontrib>Sepehr, Estatira</creatorcontrib><creatorcontrib>He, Xiaobo</creatorcontrib><creatorcontrib>McLellen, Florence</creatorcontrib><creatorcontrib>Lewis, Sherry M</creatorcontrib><creatorcontrib>Greenhaw, James</creatorcontrib><creatorcontrib>Fisher, Jeffrey</creatorcontrib><creatorcontrib>Yang, Xiaoxia</creatorcontrib><creatorcontrib>Chemerynski, Susan</creatorcontrib><creatorcontrib>Yee, Steven B</creatorcontrib><creatorcontrib>Rosenfeldt, Hans</creatorcontrib><creatorcontrib>Yeager, R Philip</creatorcontrib><creatorcontrib>Howard, Paul C</creatorcontrib><creatorcontrib>Hu, Shu-Chieh</creatorcontrib><creatorcontrib>Roqué, Pamela</creatorcontrib><creatorcontrib>Goel, Reema</creatorcontrib><creatorcontrib>Kc, Prabha</creatorcontrib><creatorcontrib>Yi, Jinghai</creatorcontrib><title>Pharmacokinetic analysis of nicotine and its metabolites (cotinine and trans-3′-hydroxycotinine) in male Sprague-Dawley rats following nose-only inhalation, oral gavage, and intravenous infusion of nicotine</title><title>Toxicological sciences</title><addtitle>Toxicol Sci</addtitle><description>Abstract
Nicotine is an alkaloid found in tobacco. Human exposure to nicotine primarily occurs through the use of tobacco products. To date, limited nicotine pharmacokinetic data in animals have been reported. This study exposed male Sprague-Dawley rats to vehicle (and/or air) or 4 doses of nicotine via nose-only inhalation (INH), oral gavage (PO), and intravenous (IV) infusion. Plasma, 6 tissues (brain, heart, lung, liver, kidney, and muscle), and urine were collected at multiple timepoints from 5 min to 48 h post-dose. The concentrations of nicotine, cotinine, and trans-3′-hydroxycotinine (3-OH-cotinine) were determined, and the pharmacokinetic profiles were compared among the 4 doses for each route. The results indicated that after single nicotine dose, nicotine bioavailability was 53% via PO. Across all the administration routes and doses, nicotine was quickly distributed to all 6 tissues; kidney had the highest nicotine and cotinine levels, and the lung had the highest 3-OH-cotinine levels; nicotine was metabolized extensively to cotinine and cotinine was metabolized to a lesser extent to 3-OH-cotinine; the elimination of plasma nicotine, cotinine, and 3-OH-cotinine followed first-order kinetics; plasma nicotine had a shorter half-life than cotinine or 3-OH-cotinine; the half-lives of plasma nicotine, cotinine, and 3-OH-cotinine were dose- and route-independent; and nicotine and cotinine were major urinary excretions followed by 3-OH-cotinine. Nicotine, cotinine, and 3-OH-cotinine levels in plasma, tissues, and urine exhibited dose-dependent increases. These study findings improve our understanding of the pharmacokinetics of nicotine, cotinine, and 3-OH-cotinine across different routes of exposure.</description><subject>Administration, Inhalation</subject><subject>Administration, Oral</subject><subject>Animals</subject><subject>Biological Availability</subject><subject>Cotinine - analogs & derivatives</subject><subject>Cotinine - blood</subject><subject>Cotinine - pharmacokinetics</subject><subject>Cotinine - urine</subject><subject>Half-Life</subject><subject>Infusions, Intravenous</subject><subject>Male</subject><subject>Nicotine - administration & dosage</subject><subject>Nicotine - analogs & derivatives</subject><subject>Nicotine - blood</subject><subject>Nicotine - pharmacokinetics</subject><subject>Nicotine - urine</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Tissue Distribution</subject><issn>1096-6080</issn><issn>1096-0929</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhiMEoqVw5Yh8bKWmHcdbNzmiFihSpSIB52jijHdNHXuxnba58Ux9kj4DT1JDdlFvnDya__M_v_QXxVsORxwacZz8XVTm-Foj8QqeFbt5K0toqub5ZpZQw07xKsYfAJxLaF4WO6KpTgFktVs8fFlhGFD5a-MoGcXQoZ2iicxr5ozyKe_zsmcmRTZQws5bkyiy_b_aVk0BXSzF71_35Wrqg7-btvIBM44NaIl9XQdcjlSe462liQXMjtpb62-NWzLnI5Xe2SnzK7SYjHeHzAe0bIk3uKTDOYbLp27I-THmWY8xY0-zvi5eaLSR3mzeveL7xw_fzi7Ky6tPn8_eX5aq4otUCg5aLYSseU0ntQCNCpquaVBqpWqoeY_IO6i6XlIlFx3vtaxFj6dYdUJ3IPaK_dl3HfzPkWJqBxMVWYuOcrY2H1icCCm5zOjRjKrgYwyk23UwA4ap5dD-abGdW2w3LeYP7zbeYzdQ_w_f1paBgxnw4_p_Zo8v97B9</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Tang, Yunan</creator><creator>Bryant, Matthew S</creator><creator>Li, Miao</creator><creator>Min, Seonggi</creator><creator>Pellar, Gregory</creator><creator>Wu, Qiangen</creator><creator>Yang, Dong-Jin</creator><creator>Kang, Hyun-Ki</creator><creator>Sepehr, Estatira</creator><creator>He, Xiaobo</creator><creator>McLellen, Florence</creator><creator>Lewis, Sherry M</creator><creator>Greenhaw, James</creator><creator>Fisher, Jeffrey</creator><creator>Yang, Xiaoxia</creator><creator>Chemerynski, Susan</creator><creator>Yee, Steven B</creator><creator>Rosenfeldt, Hans</creator><creator>Yeager, R Philip</creator><creator>Howard, Paul C</creator><creator>Hu, Shu-Chieh</creator><creator>Roqué, Pamela</creator><creator>Goel, Reema</creator><creator>Kc, Prabha</creator><creator>Yi, Jinghai</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1831-5548</orcidid><orcidid>https://orcid.org/0000-0003-3144-3421</orcidid></search><sort><creationdate>20241201</creationdate><title>Pharmacokinetic analysis of nicotine and its metabolites (cotinine and trans-3′-hydroxycotinine) in male Sprague-Dawley rats following nose-only inhalation, oral gavage, and intravenous infusion of nicotine</title><author>Tang, Yunan ; Bryant, Matthew S ; Li, Miao ; Min, Seonggi ; Pellar, Gregory ; Wu, Qiangen ; Yang, Dong-Jin ; Kang, Hyun-Ki ; Sepehr, Estatira ; He, Xiaobo ; McLellen, Florence ; Lewis, Sherry M ; Greenhaw, James ; Fisher, Jeffrey ; Yang, Xiaoxia ; Chemerynski, Susan ; Yee, Steven B ; Rosenfeldt, Hans ; Yeager, R Philip ; Howard, Paul C ; Hu, Shu-Chieh ; Roqué, Pamela ; Goel, Reema ; Kc, Prabha ; Yi, Jinghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-310fc436818e5830fac09b99a6fcc8081daa1b02bd6e264b1df683da7a2b3fb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Administration, Inhalation</topic><topic>Administration, Oral</topic><topic>Animals</topic><topic>Biological Availability</topic><topic>Cotinine - analogs & derivatives</topic><topic>Cotinine - blood</topic><topic>Cotinine - pharmacokinetics</topic><topic>Cotinine - urine</topic><topic>Half-Life</topic><topic>Infusions, Intravenous</topic><topic>Male</topic><topic>Nicotine - administration & dosage</topic><topic>Nicotine - analogs & derivatives</topic><topic>Nicotine - blood</topic><topic>Nicotine - pharmacokinetics</topic><topic>Nicotine - urine</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yunan</creatorcontrib><creatorcontrib>Bryant, Matthew S</creatorcontrib><creatorcontrib>Li, Miao</creatorcontrib><creatorcontrib>Min, Seonggi</creatorcontrib><creatorcontrib>Pellar, Gregory</creatorcontrib><creatorcontrib>Wu, Qiangen</creatorcontrib><creatorcontrib>Yang, Dong-Jin</creatorcontrib><creatorcontrib>Kang, Hyun-Ki</creatorcontrib><creatorcontrib>Sepehr, Estatira</creatorcontrib><creatorcontrib>He, Xiaobo</creatorcontrib><creatorcontrib>McLellen, Florence</creatorcontrib><creatorcontrib>Lewis, Sherry M</creatorcontrib><creatorcontrib>Greenhaw, James</creatorcontrib><creatorcontrib>Fisher, Jeffrey</creatorcontrib><creatorcontrib>Yang, Xiaoxia</creatorcontrib><creatorcontrib>Chemerynski, Susan</creatorcontrib><creatorcontrib>Yee, Steven B</creatorcontrib><creatorcontrib>Rosenfeldt, Hans</creatorcontrib><creatorcontrib>Yeager, R Philip</creatorcontrib><creatorcontrib>Howard, Paul C</creatorcontrib><creatorcontrib>Hu, Shu-Chieh</creatorcontrib><creatorcontrib>Roqué, Pamela</creatorcontrib><creatorcontrib>Goel, Reema</creatorcontrib><creatorcontrib>Kc, Prabha</creatorcontrib><creatorcontrib>Yi, Jinghai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yunan</au><au>Bryant, Matthew S</au><au>Li, Miao</au><au>Min, Seonggi</au><au>Pellar, Gregory</au><au>Wu, Qiangen</au><au>Yang, Dong-Jin</au><au>Kang, Hyun-Ki</au><au>Sepehr, Estatira</au><au>He, Xiaobo</au><au>McLellen, Florence</au><au>Lewis, Sherry M</au><au>Greenhaw, James</au><au>Fisher, Jeffrey</au><au>Yang, Xiaoxia</au><au>Chemerynski, Susan</au><au>Yee, Steven B</au><au>Rosenfeldt, Hans</au><au>Yeager, R Philip</au><au>Howard, Paul C</au><au>Hu, Shu-Chieh</au><au>Roqué, Pamela</au><au>Goel, Reema</au><au>Kc, Prabha</au><au>Yi, Jinghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacokinetic analysis of nicotine and its metabolites (cotinine and trans-3′-hydroxycotinine) in male Sprague-Dawley rats following nose-only inhalation, oral gavage, and intravenous infusion of nicotine</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>202</volume><issue>2</issue><spage>196</spage><epage>209</epage><pages>196-209</pages><issn>1096-6080</issn><issn>1096-0929</issn><eissn>1096-0929</eissn><abstract>Abstract
Nicotine is an alkaloid found in tobacco. Human exposure to nicotine primarily occurs through the use of tobacco products. To date, limited nicotine pharmacokinetic data in animals have been reported. This study exposed male Sprague-Dawley rats to vehicle (and/or air) or 4 doses of nicotine via nose-only inhalation (INH), oral gavage (PO), and intravenous (IV) infusion. Plasma, 6 tissues (brain, heart, lung, liver, kidney, and muscle), and urine were collected at multiple timepoints from 5 min to 48 h post-dose. The concentrations of nicotine, cotinine, and trans-3′-hydroxycotinine (3-OH-cotinine) were determined, and the pharmacokinetic profiles were compared among the 4 doses for each route. The results indicated that after single nicotine dose, nicotine bioavailability was 53% via PO. Across all the administration routes and doses, nicotine was quickly distributed to all 6 tissues; kidney had the highest nicotine and cotinine levels, and the lung had the highest 3-OH-cotinine levels; nicotine was metabolized extensively to cotinine and cotinine was metabolized to a lesser extent to 3-OH-cotinine; the elimination of plasma nicotine, cotinine, and 3-OH-cotinine followed first-order kinetics; plasma nicotine had a shorter half-life than cotinine or 3-OH-cotinine; the half-lives of plasma nicotine, cotinine, and 3-OH-cotinine were dose- and route-independent; and nicotine and cotinine were major urinary excretions followed by 3-OH-cotinine. Nicotine, cotinine, and 3-OH-cotinine levels in plasma, tissues, and urine exhibited dose-dependent increases. These study findings improve our understanding of the pharmacokinetics of nicotine, cotinine, and 3-OH-cotinine across different routes of exposure.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>39270062</pmid><doi>10.1093/toxsci/kfae120</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1831-5548</orcidid><orcidid>https://orcid.org/0000-0003-3144-3421</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-6080 |
ispartof | Toxicological sciences, 2024-12, Vol.202 (2), p.196-209 |
issn | 1096-6080 1096-0929 1096-0929 |
language | eng |
recordid | cdi_proquest_miscellaneous_3104536616 |
source | Oxford Journals Online |
subjects | Administration, Inhalation Administration, Oral Animals Biological Availability Cotinine - analogs & derivatives Cotinine - blood Cotinine - pharmacokinetics Cotinine - urine Half-Life Infusions, Intravenous Male Nicotine - administration & dosage Nicotine - analogs & derivatives Nicotine - blood Nicotine - pharmacokinetics Nicotine - urine Rats Rats, Sprague-Dawley Tissue Distribution |
title | Pharmacokinetic analysis of nicotine and its metabolites (cotinine and trans-3′-hydroxycotinine) in male Sprague-Dawley rats following nose-only inhalation, oral gavage, and intravenous infusion of nicotine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacokinetic%20analysis%20of%20nicotine%20and%20its%20metabolites%20(cotinine%20and%20trans-3%E2%80%B2-hydroxycotinine)%20in%20male%20Sprague-Dawley%20rats%20following%20nose-only%20inhalation,%20oral%20gavage,%20and%20intravenous%20infusion%20of%20nicotine&rft.jtitle=Toxicological%20sciences&rft.au=Tang,%20Yunan&rft.date=2024-12-01&rft.volume=202&rft.issue=2&rft.spage=196&rft.epage=209&rft.pages=196-209&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfae120&rft_dat=%3Cproquest_cross%3E3104536616%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c214t-310fc436818e5830fac09b99a6fcc8081daa1b02bd6e264b1df683da7a2b3fb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104536616&rft_id=info:pmid/39270062&rft_oup_id=10.1093/toxsci/kfae120&rfr_iscdi=true |