Loading…
Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm
This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2024-09, Vol.PP, p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | PP |
creator | Wang, Mengxin Wu, Yuhu Qin, Sitian |
description | This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its \varepsilon -generalized Nash equilibrium ( \varepsilon -GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness. |
doi_str_mv | 10.1109/TNNLS.2024.3408241 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104537332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10680086</ieee_id><sourcerecordid>3104537332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-ceda05851396b8ada8553091b55bd10d4f376f21de7056e8204fb6a47b7356803</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EAlT4AYSQl2xa_IgdZ1lBKUglLADBLnLiSTEkcbETpCLx76QPEN6MF-dezRyETigZUUqSi8c0nT2MGGHRiEdEsYjuoENGJRsyrtTu3z9-OUDHIbyR_kkiZJTsowOeMJnECTtE31NowOvKfoHBqQ6vePLR2crm3nY1fgB4t80cl87j1DWFc4sebu0n4KmuAT_b9hVf2bIED02L71zjWtfYwrYWAs6XeGz0Yo2n0Hlnlo2ubYHH1dz5Plofob1SVwGOt3OAnq4nj5c3w9n99PZyPBsWjIh2WIDRRChBeSJzpY1WQnCS0FyI3FBiopLHsmTUQNxfCIqRqMyljuI85kIqwgfofNO78O6jg9BmtQ0FVJVuwHUh45REgsecsx5lG7TwLgQPZbbwttZ-mVGSrcxna_PZyny2Nd-Hzrb9XV6D-Yv8eu6B0w1gAeBfY78cUZL_AJxFiXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104537332</pqid></control><display><type>article</type><title>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Mengxin ; Wu, Yuhu ; Qin, Sitian</creator><creatorcontrib>Wang, Mengxin ; Wu, Yuhu ; Qin, Sitian</creatorcontrib><description><![CDATA[This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its <inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-generalized Nash equilibrium (<inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3408241</identifier><identifier>PMID: 39269792</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive penalty term ; Convergence ; Cost function ; Games ; generalized Nash equilibrium (GNE) ; neurodynamic algorithm ; Polynomials ; Rivers ; Tikhonov regularization ; Trajectory ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-09, Vol.PP, p.1-14</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>wuyuhu@dlut.edu.cn ; qinsitian@hitwh.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10680086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39269792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wu, Yuhu</creatorcontrib><creatorcontrib>Qin, Sitian</creatorcontrib><title>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its <inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-generalized Nash equilibrium (<inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.]]></description><subject>Adaptive penalty term</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Games</subject><subject>generalized Nash equilibrium (GNE)</subject><subject>neurodynamic algorithm</subject><subject>Polynomials</subject><subject>Rivers</subject><subject>Tikhonov regularization</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EAlT4AYSQl2xa_IgdZ1lBKUglLADBLnLiSTEkcbETpCLx76QPEN6MF-dezRyETigZUUqSi8c0nT2MGGHRiEdEsYjuoENGJRsyrtTu3z9-OUDHIbyR_kkiZJTsowOeMJnECTtE31NowOvKfoHBqQ6vePLR2crm3nY1fgB4t80cl87j1DWFc4sebu0n4KmuAT_b9hVf2bIED02L71zjWtfYwrYWAs6XeGz0Yo2n0Hlnlo2ubYHH1dz5Plofob1SVwGOt3OAnq4nj5c3w9n99PZyPBsWjIh2WIDRRChBeSJzpY1WQnCS0FyI3FBiopLHsmTUQNxfCIqRqMyljuI85kIqwgfofNO78O6jg9BmtQ0FVJVuwHUh45REgsecsx5lG7TwLgQPZbbwttZ-mVGSrcxna_PZyny2Nd-Hzrb9XV6D-Yv8eu6B0w1gAeBfY78cUZL_AJxFiXA</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Wang, Mengxin</creator><creator>Wu, Yuhu</creator><creator>Qin, Sitian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/wuyuhu@dlut.edu.cn</orcidid><orcidid>https://orcid.org/qinsitian@hitwh.edu.cn</orcidid></search><sort><creationdate>20240913</creationdate><title>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</title><author>Wang, Mengxin ; Wu, Yuhu ; Qin, Sitian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-ceda05851396b8ada8553091b55bd10d4f376f21de7056e8204fb6a47b7356803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive penalty term</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Games</topic><topic>generalized Nash equilibrium (GNE)</topic><topic>neurodynamic algorithm</topic><topic>Polynomials</topic><topic>Rivers</topic><topic>Tikhonov regularization</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wu, Yuhu</creatorcontrib><creatorcontrib>Qin, Sitian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengxin</au><au>Wu, Yuhu</au><au>Qin, Sitian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-09-13</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its <inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-generalized Nash equilibrium (<inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>39269792</pmid><doi>10.1109/TNNLS.2024.3408241</doi><tpages>14</tpages><orcidid>https://orcid.org/wuyuhu@dlut.edu.cn</orcidid><orcidid>https://orcid.org/qinsitian@hitwh.edu.cn</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-09, Vol.PP, p.1-14 |
issn | 2162-237X 2162-2388 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_3104537332 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptive penalty term Convergence Cost function Games generalized Nash equilibrium (GNE) neurodynamic algorithm Polynomials Rivers Tikhonov regularization Trajectory Vectors |
title | Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Nash%20Equilibrium%20Seeking%20for%20Noncooperative%20Game%20With%20Different%20Monotonicities%20by%20Adaptive%20Neurodynamic%20Algorithm&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Mengxin&rft.date=2024-09-13&rft.volume=PP&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3408241&rft_dat=%3Cproquest_ieee_%3E3104537332%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c205t-ceda05851396b8ada8553091b55bd10d4f376f21de7056e8204fb6a47b7356803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104537332&rft_id=info:pmid/39269792&rft_ieee_id=10680086&rfr_iscdi=true |