Loading…

Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm

This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems 2024-09, Vol.PP, p.1-14
Main Authors: Wang, Mengxin, Wu, Yuhu, Qin, Sitian
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Wang, Mengxin
Wu, Yuhu
Qin, Sitian
description This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its \varepsilon -generalized Nash equilibrium ( \varepsilon -GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.
doi_str_mv 10.1109/TNNLS.2024.3408241
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104537332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10680086</ieee_id><sourcerecordid>3104537332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-ceda05851396b8ada8553091b55bd10d4f376f21de7056e8204fb6a47b7356803</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EAlT4AYSQl2xa_IgdZ1lBKUglLADBLnLiSTEkcbETpCLx76QPEN6MF-dezRyETigZUUqSi8c0nT2MGGHRiEdEsYjuoENGJRsyrtTu3z9-OUDHIbyR_kkiZJTsowOeMJnECTtE31NowOvKfoHBqQ6vePLR2crm3nY1fgB4t80cl87j1DWFc4sebu0n4KmuAT_b9hVf2bIED02L71zjWtfYwrYWAs6XeGz0Yo2n0Hlnlo2ubYHH1dz5Plofob1SVwGOt3OAnq4nj5c3w9n99PZyPBsWjIh2WIDRRChBeSJzpY1WQnCS0FyI3FBiopLHsmTUQNxfCIqRqMyljuI85kIqwgfofNO78O6jg9BmtQ0FVJVuwHUh45REgsecsx5lG7TwLgQPZbbwttZ-mVGSrcxna_PZyny2Nd-Hzrb9XV6D-Yv8eu6B0w1gAeBfY78cUZL_AJxFiXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104537332</pqid></control><display><type>article</type><title>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Mengxin ; Wu, Yuhu ; Qin, Sitian</creator><creatorcontrib>Wang, Mengxin ; Wu, Yuhu ; Qin, Sitian</creatorcontrib><description><![CDATA[This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its <inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-generalized Nash equilibrium (<inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3408241</identifier><identifier>PMID: 39269792</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive penalty term ; Convergence ; Cost function ; Games ; generalized Nash equilibrium (GNE) ; neurodynamic algorithm ; Polynomials ; Rivers ; Tikhonov regularization ; Trajectory ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-09, Vol.PP, p.1-14</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>wuyuhu@dlut.edu.cn ; qinsitian@hitwh.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10680086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39269792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wu, Yuhu</creatorcontrib><creatorcontrib>Qin, Sitian</creatorcontrib><title>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its <inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-generalized Nash equilibrium (<inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.]]></description><subject>Adaptive penalty term</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Games</subject><subject>generalized Nash equilibrium (GNE)</subject><subject>neurodynamic algorithm</subject><subject>Polynomials</subject><subject>Rivers</subject><subject>Tikhonov regularization</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EAlT4AYSQl2xa_IgdZ1lBKUglLADBLnLiSTEkcbETpCLx76QPEN6MF-dezRyETigZUUqSi8c0nT2MGGHRiEdEsYjuoENGJRsyrtTu3z9-OUDHIbyR_kkiZJTsowOeMJnECTtE31NowOvKfoHBqQ6vePLR2crm3nY1fgB4t80cl87j1DWFc4sebu0n4KmuAT_b9hVf2bIED02L71zjWtfYwrYWAs6XeGz0Yo2n0Hlnlo2ubYHH1dz5Plofob1SVwGOt3OAnq4nj5c3w9n99PZyPBsWjIh2WIDRRChBeSJzpY1WQnCS0FyI3FBiopLHsmTUQNxfCIqRqMyljuI85kIqwgfofNO78O6jg9BmtQ0FVJVuwHUh45REgsecsx5lG7TwLgQPZbbwttZ-mVGSrcxna_PZyny2Nd-Hzrb9XV6D-Yv8eu6B0w1gAeBfY78cUZL_AJxFiXA</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Wang, Mengxin</creator><creator>Wu, Yuhu</creator><creator>Qin, Sitian</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/wuyuhu@dlut.edu.cn</orcidid><orcidid>https://orcid.org/qinsitian@hitwh.edu.cn</orcidid></search><sort><creationdate>20240913</creationdate><title>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</title><author>Wang, Mengxin ; Wu, Yuhu ; Qin, Sitian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-ceda05851396b8ada8553091b55bd10d4f376f21de7056e8204fb6a47b7356803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive penalty term</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Games</topic><topic>generalized Nash equilibrium (GNE)</topic><topic>neurodynamic algorithm</topic><topic>Polynomials</topic><topic>Rivers</topic><topic>Tikhonov regularization</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mengxin</creatorcontrib><creatorcontrib>Wu, Yuhu</creatorcontrib><creatorcontrib>Qin, Sitian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mengxin</au><au>Wu, Yuhu</au><au>Qin, Sitian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-09-13</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[This article proposes a novel adaptive neurodynamic algorithm (ANA) to seek generalized Nash equilibrium (GNE) of the noncooperative constrained game with different monotone conditions. In the ANA, the adaptive penalty term, which acts as trajectory-dependent penalty parameters, evolves based on the degree of constraints violation until the trajectory enters the action set of noncooperative game. It is shown that the trajectory of the ANA enters the action set in finite time benefited from the adaptive penalty term. Moreover, it is proven that the trajectory exponentially (or polynomially) converges to the unique GNE when the pseudo-gradient of cost function in noncooperative game satisfies strong (or "generalized" strong) monotonicity. To the best of our knowledge, this is the first time to study the polynomial convergence of GNE seeking algorithm. Furthermore, when the pseudo-gradient mentioned above satisfies monotonicity in general, based on Tikhonov regularization method, a new ANA for finding its <inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-generalized Nash equilibrium (<inline-formula> <tex-math notation="LaTeX">\varepsilon</tex-math> </inline-formula>-GNE) is proposed, and the related exponential convergence of the algorithm is established. Finally, the river basin pollution game and 5G base station location game are given as examples to showcase the algorithm's effectiveness.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>39269792</pmid><doi>10.1109/TNNLS.2024.3408241</doi><tpages>14</tpages><orcidid>https://orcid.org/wuyuhu@dlut.edu.cn</orcidid><orcidid>https://orcid.org/qinsitian@hitwh.edu.cn</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-09, Vol.PP, p.1-14
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_proquest_miscellaneous_3104537332
source IEEE Electronic Library (IEL) Journals
subjects Adaptive penalty term
Convergence
Cost function
Games
generalized Nash equilibrium (GNE)
neurodynamic algorithm
Polynomials
Rivers
Tikhonov regularization
Trajectory
Vectors
title Generalized Nash Equilibrium Seeking for Noncooperative Game With Different Monotonicities by Adaptive Neurodynamic Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T06%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Nash%20Equilibrium%20Seeking%20for%20Noncooperative%20Game%20With%20Different%20Monotonicities%20by%20Adaptive%20Neurodynamic%20Algorithm&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Wang,%20Mengxin&rft.date=2024-09-13&rft.volume=PP&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3408241&rft_dat=%3Cproquest_ieee_%3E3104537332%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c205t-ceda05851396b8ada8553091b55bd10d4f376f21de7056e8204fb6a47b7356803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104537332&rft_id=info:pmid/39269792&rft_ieee_id=10680086&rfr_iscdi=true