Loading…

Effect of Vibration Pretreatment-Microwave Curing Process Parameters on the Mechanical Performance of Resin-Based Composites

The vibration pretreatment-microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight...

Full description

Saved in:
Bibliographic Details
Published in:Polymers 2024-09, Vol.16 (17), p.2518
Main Authors: Zhang, Dechao, Zhan, Lihua, Ma, Bolin, Guo, Jinzhan, Jin, Wentao, Hu, Xin, Yao, Shunming, Dai, Guangming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c207t-aefe88245ec3d18a5a1809eb283471dc0c6e255931b134bff1c1a9ec15657eed3
container_end_page
container_issue 17
container_start_page 2518
container_title Polymers
container_volume 16
creator Zhang, Dechao
Zhan, Lihua
Ma, Bolin
Guo, Jinzhan
Jin, Wentao
Hu, Xin
Yao, Shunming
Dai, Guangming
description The vibration pretreatment-microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of T700/TRE231; specifically, their influence on the interlaminar shear strength and impact strength of the composite. Initially, an orthogonal experimental design was employed with interlaminar shear strength as the optimization target, where vibration acceleration was determined as the primary factor and dwell time as the secondary factor. Concurrently, thermogravimetric analysis (TGA) was performed based on process parameters that corresponded to the extremum of interlaminar shear strength, revealing a 2.17% difference in fiber weight fraction among specimens with varying parameters, indicating a minimal effect of fiber weight fraction on mechanical properties. Optical digital microscope (ODM) analysis identified interlaminar large-size voids in specimens treated with vibration energy of 5 g and 15 g, while specimens subjected to a vibration energy of 10 g exhibited numerous small-sized voids within layers, suggesting that vibration acceleration influences void escape pathways. Finally, impact testing revealed the effect of the vibration pretreatment process parameters on the impact strength, implying a positive correlation between interlaminar shear strength and impact strength.
doi_str_mv 10.3390/polym16172518
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104538994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104538994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-aefe88245ec3d18a5a1809eb283471dc0c6e255931b134bff1c1a9ec15657eed3</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMorqwevUrAi5dq0jRtc9Rl_YAVF1GvJU0nmqVt1iRVFvzxRldFncsMzDMvM_MitE_JMWOCnCxtu-poTouU03ID7aSkYEnGcrL5qx6hPe8XJEbG88huoxETaZFRTnbQ21RrUAFbjR9M7WQwtsdzB8GBDB30Ibk2ytlX-QJ4MjjTP8auVeA9nksnOwjgPI4z4QnwNagn2RslWzwHp63rZK_gQ_sWvOmTM-mhwRPbLa03Afwu2tKy9bD3lcfo_nx6N7lMZjcXV5PTWaLiESGRoKEs04yDYg0tJZe0JALqtGRZQRtFVA4p54LRmrKs1poqKgUoynNeADRsjI7WuktnnwfwoeqMV9C2sgc7-IrR-BpWCpFF9PAfurCD6-N2nxRluRBFpJI1FV_jvQNdLZ3ppFtVlFQfzlR_nIn8wZfqUHfQ_NDfPrB3bUSK_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104136997</pqid></control><display><type>article</type><title>Effect of Vibration Pretreatment-Microwave Curing Process Parameters on the Mechanical Performance of Resin-Based Composites</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Zhang, Dechao ; Zhan, Lihua ; Ma, Bolin ; Guo, Jinzhan ; Jin, Wentao ; Hu, Xin ; Yao, Shunming ; Dai, Guangming</creator><creatorcontrib>Zhang, Dechao ; Zhan, Lihua ; Ma, Bolin ; Guo, Jinzhan ; Jin, Wentao ; Hu, Xin ; Yao, Shunming ; Dai, Guangming</creatorcontrib><description>The vibration pretreatment-microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of T700/TRE231; specifically, their influence on the interlaminar shear strength and impact strength of the composite. Initially, an orthogonal experimental design was employed with interlaminar shear strength as the optimization target, where vibration acceleration was determined as the primary factor and dwell time as the secondary factor. Concurrently, thermogravimetric analysis (TGA) was performed based on process parameters that corresponded to the extremum of interlaminar shear strength, revealing a 2.17% difference in fiber weight fraction among specimens with varying parameters, indicating a minimal effect of fiber weight fraction on mechanical properties. Optical digital microscope (ODM) analysis identified interlaminar large-size voids in specimens treated with vibration energy of 5 g and 15 g, while specimens subjected to a vibration energy of 10 g exhibited numerous small-sized voids within layers, suggesting that vibration acceleration influences void escape pathways. Finally, impact testing revealed the effect of the vibration pretreatment process parameters on the impact strength, implying a positive correlation between interlaminar shear strength and impact strength.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16172518</identifier><identifier>PMID: 39274150</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Composite materials ; Curing ; Design factors ; Design of experiments ; Design optimization ; Dwell time ; Energy consumption ; Impact strength ; Interfacial bonding ; Interfacial shear strength ; Low pressure ; Mechanical properties ; Microwave heating ; Molding (process) ; Optical properties ; Parameter identification ; Pressure effects ; Pretreatment ; Process parameters ; Random vibration ; Resins ; Shear strength ; Thermogravimetric analysis ; Vibration analysis ; Vibration effects</subject><ispartof>Polymers, 2024-09, Vol.16 (17), p.2518</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c207t-aefe88245ec3d18a5a1809eb283471dc0c6e255931b134bff1c1a9ec15657eed3</cites><orcidid>0000-0001-9419-4149 ; 0009-0002-7944-4300 ; 0000-0003-0411-6302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3104136997/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3104136997?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Dechao</creatorcontrib><creatorcontrib>Zhan, Lihua</creatorcontrib><creatorcontrib>Ma, Bolin</creatorcontrib><creatorcontrib>Guo, Jinzhan</creatorcontrib><creatorcontrib>Jin, Wentao</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Yao, Shunming</creatorcontrib><creatorcontrib>Dai, Guangming</creatorcontrib><title>Effect of Vibration Pretreatment-Microwave Curing Process Parameters on the Mechanical Performance of Resin-Based Composites</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>The vibration pretreatment-microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of T700/TRE231; specifically, their influence on the interlaminar shear strength and impact strength of the composite. Initially, an orthogonal experimental design was employed with interlaminar shear strength as the optimization target, where vibration acceleration was determined as the primary factor and dwell time as the secondary factor. Concurrently, thermogravimetric analysis (TGA) was performed based on process parameters that corresponded to the extremum of interlaminar shear strength, revealing a 2.17% difference in fiber weight fraction among specimens with varying parameters, indicating a minimal effect of fiber weight fraction on mechanical properties. Optical digital microscope (ODM) analysis identified interlaminar large-size voids in specimens treated with vibration energy of 5 g and 15 g, while specimens subjected to a vibration energy of 10 g exhibited numerous small-sized voids within layers, suggesting that vibration acceleration influences void escape pathways. Finally, impact testing revealed the effect of the vibration pretreatment process parameters on the impact strength, implying a positive correlation between interlaminar shear strength and impact strength.</description><subject>Composite materials</subject><subject>Curing</subject><subject>Design factors</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Dwell time</subject><subject>Energy consumption</subject><subject>Impact strength</subject><subject>Interfacial bonding</subject><subject>Interfacial shear strength</subject><subject>Low pressure</subject><subject>Mechanical properties</subject><subject>Microwave heating</subject><subject>Molding (process)</subject><subject>Optical properties</subject><subject>Parameter identification</subject><subject>Pressure effects</subject><subject>Pretreatment</subject><subject>Process parameters</subject><subject>Random vibration</subject><subject>Resins</subject><subject>Shear strength</subject><subject>Thermogravimetric analysis</subject><subject>Vibration analysis</subject><subject>Vibration effects</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1LxDAQhoMorqwevUrAi5dq0jRtc9Rl_YAVF1GvJU0nmqVt1iRVFvzxRldFncsMzDMvM_MitE_JMWOCnCxtu-poTouU03ID7aSkYEnGcrL5qx6hPe8XJEbG88huoxETaZFRTnbQ21RrUAFbjR9M7WQwtsdzB8GBDB30Ibk2ytlX-QJ4MjjTP8auVeA9nksnOwjgPI4z4QnwNagn2RslWzwHp63rZK_gQ_sWvOmTM-mhwRPbLa03Afwu2tKy9bD3lcfo_nx6N7lMZjcXV5PTWaLiESGRoKEs04yDYg0tJZe0JALqtGRZQRtFVA4p54LRmrKs1poqKgUoynNeADRsjI7WuktnnwfwoeqMV9C2sgc7-IrR-BpWCpFF9PAfurCD6-N2nxRluRBFpJI1FV_jvQNdLZ3ppFtVlFQfzlR_nIn8wZfqUHfQ_NDfPrB3bUSK_Q</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Zhang, Dechao</creator><creator>Zhan, Lihua</creator><creator>Ma, Bolin</creator><creator>Guo, Jinzhan</creator><creator>Jin, Wentao</creator><creator>Hu, Xin</creator><creator>Yao, Shunming</creator><creator>Dai, Guangming</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9419-4149</orcidid><orcidid>https://orcid.org/0009-0002-7944-4300</orcidid><orcidid>https://orcid.org/0000-0003-0411-6302</orcidid></search><sort><creationdate>20240904</creationdate><title>Effect of Vibration Pretreatment-Microwave Curing Process Parameters on the Mechanical Performance of Resin-Based Composites</title><author>Zhang, Dechao ; Zhan, Lihua ; Ma, Bolin ; Guo, Jinzhan ; Jin, Wentao ; Hu, Xin ; Yao, Shunming ; Dai, Guangming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-aefe88245ec3d18a5a1809eb283471dc0c6e255931b134bff1c1a9ec15657eed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Composite materials</topic><topic>Curing</topic><topic>Design factors</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Dwell time</topic><topic>Energy consumption</topic><topic>Impact strength</topic><topic>Interfacial bonding</topic><topic>Interfacial shear strength</topic><topic>Low pressure</topic><topic>Mechanical properties</topic><topic>Microwave heating</topic><topic>Molding (process)</topic><topic>Optical properties</topic><topic>Parameter identification</topic><topic>Pressure effects</topic><topic>Pretreatment</topic><topic>Process parameters</topic><topic>Random vibration</topic><topic>Resins</topic><topic>Shear strength</topic><topic>Thermogravimetric analysis</topic><topic>Vibration analysis</topic><topic>Vibration effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dechao</creatorcontrib><creatorcontrib>Zhan, Lihua</creatorcontrib><creatorcontrib>Ma, Bolin</creatorcontrib><creatorcontrib>Guo, Jinzhan</creatorcontrib><creatorcontrib>Jin, Wentao</creatorcontrib><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Yao, Shunming</creatorcontrib><creatorcontrib>Dai, Guangming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dechao</au><au>Zhan, Lihua</au><au>Ma, Bolin</au><au>Guo, Jinzhan</au><au>Jin, Wentao</au><au>Hu, Xin</au><au>Yao, Shunming</au><au>Dai, Guangming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Vibration Pretreatment-Microwave Curing Process Parameters on the Mechanical Performance of Resin-Based Composites</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>16</volume><issue>17</issue><spage>2518</spage><pages>2518-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>The vibration pretreatment-microwave curing process can achieve high-quality molding under low-pressure conditions and is widely used in the curing of resin-based composites. This study investigated the effects of the vibration pretreatment process parameters on the void content and the fiber weight fraction of T700/TRE231; specifically, their influence on the interlaminar shear strength and impact strength of the composite. Initially, an orthogonal experimental design was employed with interlaminar shear strength as the optimization target, where vibration acceleration was determined as the primary factor and dwell time as the secondary factor. Concurrently, thermogravimetric analysis (TGA) was performed based on process parameters that corresponded to the extremum of interlaminar shear strength, revealing a 2.17% difference in fiber weight fraction among specimens with varying parameters, indicating a minimal effect of fiber weight fraction on mechanical properties. Optical digital microscope (ODM) analysis identified interlaminar large-size voids in specimens treated with vibration energy of 5 g and 15 g, while specimens subjected to a vibration energy of 10 g exhibited numerous small-sized voids within layers, suggesting that vibration acceleration influences void escape pathways. Finally, impact testing revealed the effect of the vibration pretreatment process parameters on the impact strength, implying a positive correlation between interlaminar shear strength and impact strength.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274150</pmid><doi>10.3390/polym16172518</doi><orcidid>https://orcid.org/0000-0001-9419-4149</orcidid><orcidid>https://orcid.org/0009-0002-7944-4300</orcidid><orcidid>https://orcid.org/0000-0003-0411-6302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2024-09, Vol.16 (17), p.2518
issn 2073-4360
2073-4360
language eng
recordid cdi_proquest_miscellaneous_3104538994
source PubMed Central Free; Publicly Available Content Database
subjects Composite materials
Curing
Design factors
Design of experiments
Design optimization
Dwell time
Energy consumption
Impact strength
Interfacial bonding
Interfacial shear strength
Low pressure
Mechanical properties
Microwave heating
Molding (process)
Optical properties
Parameter identification
Pressure effects
Pretreatment
Process parameters
Random vibration
Resins
Shear strength
Thermogravimetric analysis
Vibration analysis
Vibration effects
title Effect of Vibration Pretreatment-Microwave Curing Process Parameters on the Mechanical Performance of Resin-Based Composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Vibration%20Pretreatment-Microwave%20Curing%20Process%20Parameters%20on%20the%20Mechanical%20Performance%20of%20Resin-Based%20Composites&rft.jtitle=Polymers&rft.au=Zhang,%20Dechao&rft.date=2024-09-04&rft.volume=16&rft.issue=17&rft.spage=2518&rft.pages=2518-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16172518&rft_dat=%3Cproquest_cross%3E3104538994%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c207t-aefe88245ec3d18a5a1809eb283471dc0c6e255931b134bff1c1a9ec15657eed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104136997&rft_id=info:pmid/39274150&rfr_iscdi=true