Loading…

Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach

This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuri...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-09, Vol.17 (17), p.4367
Main Authors: Ahmed, Omar Shabbir, Ali, Jaffar Syed Mohamed, Aabid, Abdul, Hrairi, Meftah, Yatim, Norfazrina Mohd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3
container_end_page
container_issue 17
container_start_page 4367
container_title Materials
container_volume 17
creator Ahmed, Omar Shabbir
Ali, Jaffar Syed Mohamed
Aabid, Abdul
Hrairi, Meftah
Yatim, Norfazrina Mohd
description This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.
doi_str_mv 10.3390/ma17174367
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104542074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103995209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3</originalsourceid><addsrcrecordid>eNpdkd1u1DAQhS1ERaulNzwAssQNQtrinyS2uduuWoq0VStRrqOJPWFdYmexk4u-Cw-Ld1t-VN_4aPz5jGYOIW84O5PSsI8BuOKqko16QU64Mc2Sm6p6-Z8-Jqc537NypORamFfkWBqhKlWrE_LrFhIEnJK3dBVheMg-07Gn6-Qnb2Gg57P9Mfj4nfpI12PYjdlPSDcQfIQivk5pttOcMNM5Okz0Gu0W4uErREfvtphC0ZsRXP5EV_TSx73BxYAB43RgrsFufSymCCnuW612uzSW4mty1MOQ8fTpXpBvlxd366vl5ubzl_Vqs7SCVdNSyJqX4RQIwTqOrukdd53jvW60VroRXa9139WVNqpDWUslpHasvACKzvZyQd4_-pa2P2fMUxt8tjgMEHGccys5q-pKsLLmBXn3DL0f51QWd6CkMbVgplAfHimbxpwT9u0u-QDpoeWs3cfW_outwG-fLOcuoPuL_glJ_gYmr5KI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103995209</pqid></control><display><type>article</type><title>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central Free</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahmed, Omar Shabbir ; Ali, Jaffar Syed Mohamed ; Aabid, Abdul ; Hrairi, Meftah ; Yatim, Norfazrina Mohd</creator><creatorcontrib>Ahmed, Omar Shabbir ; Ali, Jaffar Syed Mohamed ; Aabid, Abdul ; Hrairi, Meftah ; Yatim, Norfazrina Mohd</creatorcontrib><description>This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17174367</identifier><identifier>PMID: 39274757</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aircraft ; Algorithms ; Civil engineering ; Composite materials ; Composite structures ; Computer simulation ; Decision trees ; Deep learning ; Design ; Design optimization ; Fiber orientation ; Finite element method ; Investigations ; Laminates ; Literature reviews ; Load ; Machine learning ; Material properties ; Optimization ; Parameter identification ; Parametric analysis ; Partial differential equations ; Simulation models ; Software ; Thermal analysis ; Thermal buckling ; Thermal simulation</subject><ispartof>Materials, 2024-09, Vol.17 (17), p.4367</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3</cites><orcidid>0000-0003-3598-8795 ; 0000-0002-4355-9803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103995209/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103995209?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Omar Shabbir</creatorcontrib><creatorcontrib>Ali, Jaffar Syed Mohamed</creatorcontrib><creatorcontrib>Aabid, Abdul</creatorcontrib><creatorcontrib>Hrairi, Meftah</creatorcontrib><creatorcontrib>Yatim, Norfazrina Mohd</creatorcontrib><title>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Civil engineering</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Computer simulation</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design optimization</subject><subject>Fiber orientation</subject><subject>Finite element method</subject><subject>Investigations</subject><subject>Laminates</subject><subject>Literature reviews</subject><subject>Load</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Parametric analysis</subject><subject>Partial differential equations</subject><subject>Simulation models</subject><subject>Software</subject><subject>Thermal analysis</subject><subject>Thermal buckling</subject><subject>Thermal simulation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkd1u1DAQhS1ERaulNzwAssQNQtrinyS2uduuWoq0VStRrqOJPWFdYmexk4u-Cw-Ld1t-VN_4aPz5jGYOIW84O5PSsI8BuOKqko16QU64Mc2Sm6p6-Z8-Jqc537NypORamFfkWBqhKlWrE_LrFhIEnJK3dBVheMg-07Gn6-Qnb2Gg57P9Mfj4nfpI12PYjdlPSDcQfIQivk5pttOcMNM5Okz0Gu0W4uErREfvtphC0ZsRXP5EV_TSx73BxYAB43RgrsFufSymCCnuW612uzSW4mty1MOQ8fTpXpBvlxd366vl5ubzl_Vqs7SCVdNSyJqX4RQIwTqOrukdd53jvW60VroRXa9139WVNqpDWUslpHasvACKzvZyQd4_-pa2P2fMUxt8tjgMEHGccys5q-pKsLLmBXn3DL0f51QWd6CkMbVgplAfHimbxpwT9u0u-QDpoeWs3cfW_outwG-fLOcuoPuL_glJ_gYmr5KI</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Ahmed, Omar Shabbir</creator><creator>Ali, Jaffar Syed Mohamed</creator><creator>Aabid, Abdul</creator><creator>Hrairi, Meftah</creator><creator>Yatim, Norfazrina Mohd</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3598-8795</orcidid><orcidid>https://orcid.org/0000-0002-4355-9803</orcidid></search><sort><creationdate>20240903</creationdate><title>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</title><author>Ahmed, Omar Shabbir ; Ali, Jaffar Syed Mohamed ; Aabid, Abdul ; Hrairi, Meftah ; Yatim, Norfazrina Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Civil engineering</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Computer simulation</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design optimization</topic><topic>Fiber orientation</topic><topic>Finite element method</topic><topic>Investigations</topic><topic>Laminates</topic><topic>Literature reviews</topic><topic>Load</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Parametric analysis</topic><topic>Partial differential equations</topic><topic>Simulation models</topic><topic>Software</topic><topic>Thermal analysis</topic><topic>Thermal buckling</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Omar Shabbir</creatorcontrib><creatorcontrib>Ali, Jaffar Syed Mohamed</creatorcontrib><creatorcontrib>Aabid, Abdul</creatorcontrib><creatorcontrib>Hrairi, Meftah</creatorcontrib><creatorcontrib>Yatim, Norfazrina Mohd</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Omar Shabbir</au><au>Ali, Jaffar Syed Mohamed</au><au>Aabid, Abdul</au><au>Hrairi, Meftah</au><au>Yatim, Norfazrina Mohd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>17</volume><issue>17</issue><spage>4367</spage><pages>4367-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274757</pmid><doi>10.3390/ma17174367</doi><orcidid>https://orcid.org/0000-0003-3598-8795</orcidid><orcidid>https://orcid.org/0000-0002-4355-9803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-09, Vol.17 (17), p.4367
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_3104542074
source Access via ProQuest (Open Access); PubMed Central Free; Free Full-Text Journals in Chemistry
subjects Aircraft
Algorithms
Civil engineering
Composite materials
Composite structures
Computer simulation
Decision trees
Deep learning
Design
Design optimization
Fiber orientation
Finite element method
Investigations
Laminates
Literature reviews
Load
Machine learning
Material properties
Optimization
Parameter identification
Parametric analysis
Partial differential equations
Simulation models
Software
Thermal analysis
Thermal buckling
Thermal simulation
title Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Analysis%20of%20Critical%20Buckling%20in%20Composite%20Laminate%20Structures%20under%20Mechanical%20and%20Thermal%20Loads:%20A%20Finite%20Element%20and%20Machine%20Learning%20Approach&rft.jtitle=Materials&rft.au=Ahmed,%20Omar%20Shabbir&rft.date=2024-09-03&rft.volume=17&rft.issue=17&rft.spage=4367&rft.pages=4367-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17174367&rft_dat=%3Cproquest_cross%3E3103995209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103995209&rft_id=info:pmid/39274757&rfr_iscdi=true