Loading…
Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach
This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuri...
Saved in:
Published in: | Materials 2024-09, Vol.17 (17), p.4367 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3 |
container_end_page | |
container_issue | 17 |
container_start_page | 4367 |
container_title | Materials |
container_volume | 17 |
creator | Ahmed, Omar Shabbir Ali, Jaffar Syed Mohamed Aabid, Abdul Hrairi, Meftah Yatim, Norfazrina Mohd |
description | This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies. |
doi_str_mv | 10.3390/ma17174367 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3104542074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3103995209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3</originalsourceid><addsrcrecordid>eNpdkd1u1DAQhS1ERaulNzwAssQNQtrinyS2uduuWoq0VStRrqOJPWFdYmexk4u-Cw-Ld1t-VN_4aPz5jGYOIW84O5PSsI8BuOKqko16QU64Mc2Sm6p6-Z8-Jqc537NypORamFfkWBqhKlWrE_LrFhIEnJK3dBVheMg-07Gn6-Qnb2Gg57P9Mfj4nfpI12PYjdlPSDcQfIQivk5pttOcMNM5Okz0Gu0W4uErREfvtphC0ZsRXP5EV_TSx73BxYAB43RgrsFufSymCCnuW612uzSW4mty1MOQ8fTpXpBvlxd366vl5ubzl_Vqs7SCVdNSyJqX4RQIwTqOrukdd53jvW60VroRXa9139WVNqpDWUslpHasvACKzvZyQd4_-pa2P2fMUxt8tjgMEHGccys5q-pKsLLmBXn3DL0f51QWd6CkMbVgplAfHimbxpwT9u0u-QDpoeWs3cfW_outwG-fLOcuoPuL_glJ_gYmr5KI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103995209</pqid></control><display><type>article</type><title>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central Free</source><source>Free Full-Text Journals in Chemistry</source><creator>Ahmed, Omar Shabbir ; Ali, Jaffar Syed Mohamed ; Aabid, Abdul ; Hrairi, Meftah ; Yatim, Norfazrina Mohd</creator><creatorcontrib>Ahmed, Omar Shabbir ; Ali, Jaffar Syed Mohamed ; Aabid, Abdul ; Hrairi, Meftah ; Yatim, Norfazrina Mohd</creatorcontrib><description>This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17174367</identifier><identifier>PMID: 39274757</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aircraft ; Algorithms ; Civil engineering ; Composite materials ; Composite structures ; Computer simulation ; Decision trees ; Deep learning ; Design ; Design optimization ; Fiber orientation ; Finite element method ; Investigations ; Laminates ; Literature reviews ; Load ; Machine learning ; Material properties ; Optimization ; Parameter identification ; Parametric analysis ; Partial differential equations ; Simulation models ; Software ; Thermal analysis ; Thermal buckling ; Thermal simulation</subject><ispartof>Materials, 2024-09, Vol.17 (17), p.4367</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3</cites><orcidid>0000-0003-3598-8795 ; 0000-0002-4355-9803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103995209/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103995209?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39274757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Omar Shabbir</creatorcontrib><creatorcontrib>Ali, Jaffar Syed Mohamed</creatorcontrib><creatorcontrib>Aabid, Abdul</creatorcontrib><creatorcontrib>Hrairi, Meftah</creatorcontrib><creatorcontrib>Yatim, Norfazrina Mohd</creatorcontrib><title>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Civil engineering</subject><subject>Composite materials</subject><subject>Composite structures</subject><subject>Computer simulation</subject><subject>Decision trees</subject><subject>Deep learning</subject><subject>Design</subject><subject>Design optimization</subject><subject>Fiber orientation</subject><subject>Finite element method</subject><subject>Investigations</subject><subject>Laminates</subject><subject>Literature reviews</subject><subject>Load</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Parametric analysis</subject><subject>Partial differential equations</subject><subject>Simulation models</subject><subject>Software</subject><subject>Thermal analysis</subject><subject>Thermal buckling</subject><subject>Thermal simulation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkd1u1DAQhS1ERaulNzwAssQNQtrinyS2uduuWoq0VStRrqOJPWFdYmexk4u-Cw-Ld1t-VN_4aPz5jGYOIW84O5PSsI8BuOKqko16QU64Mc2Sm6p6-Z8-Jqc537NypORamFfkWBqhKlWrE_LrFhIEnJK3dBVheMg-07Gn6-Qnb2Gg57P9Mfj4nfpI12PYjdlPSDcQfIQivk5pttOcMNM5Okz0Gu0W4uErREfvtphC0ZsRXP5EV_TSx73BxYAB43RgrsFufSymCCnuW612uzSW4mty1MOQ8fTpXpBvlxd366vl5ubzl_Vqs7SCVdNSyJqX4RQIwTqOrukdd53jvW60VroRXa9139WVNqpDWUslpHasvACKzvZyQd4_-pa2P2fMUxt8tjgMEHGccys5q-pKsLLmBXn3DL0f51QWd6CkMbVgplAfHimbxpwT9u0u-QDpoeWs3cfW_outwG-fLOcuoPuL_glJ_gYmr5KI</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Ahmed, Omar Shabbir</creator><creator>Ali, Jaffar Syed Mohamed</creator><creator>Aabid, Abdul</creator><creator>Hrairi, Meftah</creator><creator>Yatim, Norfazrina Mohd</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3598-8795</orcidid><orcidid>https://orcid.org/0000-0002-4355-9803</orcidid></search><sort><creationdate>20240903</creationdate><title>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</title><author>Ahmed, Omar Shabbir ; Ali, Jaffar Syed Mohamed ; Aabid, Abdul ; Hrairi, Meftah ; Yatim, Norfazrina Mohd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Civil engineering</topic><topic>Composite materials</topic><topic>Composite structures</topic><topic>Computer simulation</topic><topic>Decision trees</topic><topic>Deep learning</topic><topic>Design</topic><topic>Design optimization</topic><topic>Fiber orientation</topic><topic>Finite element method</topic><topic>Investigations</topic><topic>Laminates</topic><topic>Literature reviews</topic><topic>Load</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Parametric analysis</topic><topic>Partial differential equations</topic><topic>Simulation models</topic><topic>Software</topic><topic>Thermal analysis</topic><topic>Thermal buckling</topic><topic>Thermal simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Omar Shabbir</creatorcontrib><creatorcontrib>Ali, Jaffar Syed Mohamed</creatorcontrib><creatorcontrib>Aabid, Abdul</creatorcontrib><creatorcontrib>Hrairi, Meftah</creatorcontrib><creatorcontrib>Yatim, Norfazrina Mohd</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Omar Shabbir</au><au>Ali, Jaffar Syed Mohamed</au><au>Aabid, Abdul</au><au>Hrairi, Meftah</au><au>Yatim, Norfazrina Mohd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>17</volume><issue>17</issue><spage>4367</spage><pages>4367-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This research focuses on investigating the buckling strength of thin-walled composite structures featuring various shapes of holes, laminates, and composite materials. A parametric study is conducted to optimize and identify the most suitable combination of material and structural parameters, ensuring the resilience of structure under both mechanical and thermal loads. Initially, a numerical approach employing the finite element method is used to design the C-section thin-walled composite structure. Later, various structural and material parameters like spacing ratio, opening ratio, hole shape, fiber orientation, and laminate sequence are systematically varied. Subsequently, simulation data from numerous cases are utilized to identify the best parameter combination using machine learning algorithms. Various ML techniques such as linear regression, lasso regression, decision tree, random forest, and gradient boosting are employed to assess their accuracy in comparison with finite element results. As a result, the simulation model showcases the variation in critical buckling load when altering the structural and material properties. Additionally, the machine learning models successfully predict the optimal critical buckling load under mechanical and thermal loading conditions. In summary, this paper delves into the study of the stability of C-section thin-walled composite structures with holes under mechanical and thermal loading conditions using finite element analysis and machine learning studies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39274757</pmid><doi>10.3390/ma17174367</doi><orcidid>https://orcid.org/0000-0003-3598-8795</orcidid><orcidid>https://orcid.org/0000-0002-4355-9803</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-09, Vol.17 (17), p.4367 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_3104542074 |
source | Access via ProQuest (Open Access); PubMed Central Free; Free Full-Text Journals in Chemistry |
subjects | Aircraft Algorithms Civil engineering Composite materials Composite structures Computer simulation Decision trees Deep learning Design Design optimization Fiber orientation Finite element method Investigations Laminates Literature reviews Load Machine learning Material properties Optimization Parameter identification Parametric analysis Partial differential equations Simulation models Software Thermal analysis Thermal buckling Thermal simulation |
title | Parametric Analysis of Critical Buckling in Composite Laminate Structures under Mechanical and Thermal Loads: A Finite Element and Machine Learning Approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Analysis%20of%20Critical%20Buckling%20in%20Composite%20Laminate%20Structures%20under%20Mechanical%20and%20Thermal%20Loads:%20A%20Finite%20Element%20and%20Machine%20Learning%20Approach&rft.jtitle=Materials&rft.au=Ahmed,%20Omar%20Shabbir&rft.date=2024-09-03&rft.volume=17&rft.issue=17&rft.spage=4367&rft.pages=4367-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17174367&rft_dat=%3Cproquest_cross%3E3103995209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c204t-23510037a220b1ed6fd1dbd1f86887862bf88fb54897be3537238d0786ae2bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103995209&rft_id=info:pmid/39274757&rfr_iscdi=true |