Loading…
Design and Coupled Moisture-Thermal Transfer Simulation of Opposite Cross-Section Polyethylene Terephthalate Knitted Fabric with Hygroscopic Quick-Drying Capability
In addition to sportswear and outdoor equipment, moisture-absorbent quick-drying fabrics are also widely used in everyday clothing and home textiles. In this study, three types of weft-knitted fabrics were designed using Coolmax fiber and polypropylene fiber. The Coolmax/PP fabric exhibits good stre...
Saved in:
Published in: | Materials 2024-09, Vol.17 (17), p.4370 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In addition to sportswear and outdoor equipment, moisture-absorbent quick-drying fabrics are also widely used in everyday clothing and home textiles. In this study, three types of weft-knitted fabrics were designed using Coolmax fiber and polypropylene fiber. The Coolmax/PP fabric exhibits good stretchability with a strain of 180.5% and achieves a high cumulative individual transfer capability of 691.6%, with a water absorption rate of 50.2%/s. The moisture conductivity gradient presented good moisture and heat conductivity in a simulated human body temperature environment using an infrared camera. Furthermore, mathematical modeling was constructed and visual simulation analysis was conducted to explore moisture-thermal transfer behavior. The simulation results closely align with experimental data, providing insights into designing flexible and wearable quick-drying fabrics for thermal management. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17174370 |