Loading…

Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation

Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field...

Full description

Saved in:
Bibliographic Details
Published in:ArXiv.org 2024-09
Main Authors: Zhao, Zhanyue, Szewczyk, Benjamin, Tarasek, Matthew, Bales, Charles, Wang, Yang, Liu, Ming, Jiang, Yiwei, Bhushan, Chitresh, Fiveland, Eric, Campwala, Zahabiya, Trowbridge, Rachel, Johansen, Phillip M, Olmsted, Zachary, Ghoshal, Goutam, Heffter, Tamas, Gandomi, Katie, Tavakkolmoghaddam, Farid, Nycz, Christopher, Jeannotte, Erin, Mane, Shweta, Nalwalk, Julia, Burdette, E Clif, Qian, Jiang, Yeo, Desmond, Pilitsis, Julie, Fischer, Gregory S
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title ArXiv.org
container_volume
creator Zhao, Zhanyue
Szewczyk, Benjamin
Tarasek, Matthew
Bales, Charles
Wang, Yang
Liu, Ming
Jiang, Yiwei
Bhushan, Chitresh
Fiveland, Eric
Campwala, Zahabiya
Trowbridge, Rachel
Johansen, Phillip M
Olmsted, Zachary
Ghoshal, Goutam
Heffter, Tamas
Gandomi, Katie
Tavakkolmoghaddam, Farid
Nycz, Christopher
Jeannotte, Erin
Mane, Shweta
Nalwalk, Julia
Burdette, E Clif
Qian, Jiang
Yeo, Desmond
Pilitsis, Julie
Fischer, Gregory S
description Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884°C (3.71%) and 0.0631 cm (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_3105492669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3105492669</sourcerecordid><originalsourceid>FETCH-LOGICAL-p565-96ba0e053ca518dd73ca1985edf38fafcd624cc938ddb4b06db9096aa4c230773</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMobsz9C5JHXwpp0qTN49zmB0x8qQOfym1z6yJpU5vWj__eohN8ugfu7xwO54TMuRBxlCWcn_7TM7IM4ZUxxlXKpRTnZCY0T3Um5Jw8bxA7et2DbemTG3oIfmwNXZUOButbmh-wb8DRjQ9IH7xBZ9sX-mGHA50ce_vu6fazw9422A4TtwdnzY_1gpzV4AIuj3dB8pttvr6Ldo-39-vVLuqkkpFWJTBkUlQg48yYdBKxziSaWmQ11JVRPKkqLaZfmZRMmVIzrQCSiguWpmJBrn5ju96_jRiGorGhQuegRT-GQsRMJporpSf08oiOZYOm6KbW0H8Vf2uIb7B_Xas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3105492669</pqid></control><display><type>article</type><title>Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhao, Zhanyue ; Szewczyk, Benjamin ; Tarasek, Matthew ; Bales, Charles ; Wang, Yang ; Liu, Ming ; Jiang, Yiwei ; Bhushan, Chitresh ; Fiveland, Eric ; Campwala, Zahabiya ; Trowbridge, Rachel ; Johansen, Phillip M ; Olmsted, Zachary ; Ghoshal, Goutam ; Heffter, Tamas ; Gandomi, Katie ; Tavakkolmoghaddam, Farid ; Nycz, Christopher ; Jeannotte, Erin ; Mane, Shweta ; Nalwalk, Julia ; Burdette, E Clif ; Qian, Jiang ; Yeo, Desmond ; Pilitsis, Julie ; Fischer, Gregory S</creator><creatorcontrib>Zhao, Zhanyue ; Szewczyk, Benjamin ; Tarasek, Matthew ; Bales, Charles ; Wang, Yang ; Liu, Ming ; Jiang, Yiwei ; Bhushan, Chitresh ; Fiveland, Eric ; Campwala, Zahabiya ; Trowbridge, Rachel ; Johansen, Phillip M ; Olmsted, Zachary ; Ghoshal, Goutam ; Heffter, Tamas ; Gandomi, Katie ; Tavakkolmoghaddam, Farid ; Nycz, Christopher ; Jeannotte, Erin ; Mane, Shweta ; Nalwalk, Julia ; Burdette, E Clif ; Qian, Jiang ; Yeo, Desmond ; Pilitsis, Julie ; Fischer, Gregory S</creatorcontrib><description>Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884°C (3.71%) and 0.0631 cm (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.</description><identifier>ISSN: 2331-8422</identifier><identifier>EISSN: 2331-8422</identifier><identifier>PMID: 39279835</identifier><language>eng</language><publisher>United States</publisher><ispartof>ArXiv.org, 2024-09</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,37013</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39279835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhanyue</creatorcontrib><creatorcontrib>Szewczyk, Benjamin</creatorcontrib><creatorcontrib>Tarasek, Matthew</creatorcontrib><creatorcontrib>Bales, Charles</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Jiang, Yiwei</creatorcontrib><creatorcontrib>Bhushan, Chitresh</creatorcontrib><creatorcontrib>Fiveland, Eric</creatorcontrib><creatorcontrib>Campwala, Zahabiya</creatorcontrib><creatorcontrib>Trowbridge, Rachel</creatorcontrib><creatorcontrib>Johansen, Phillip M</creatorcontrib><creatorcontrib>Olmsted, Zachary</creatorcontrib><creatorcontrib>Ghoshal, Goutam</creatorcontrib><creatorcontrib>Heffter, Tamas</creatorcontrib><creatorcontrib>Gandomi, Katie</creatorcontrib><creatorcontrib>Tavakkolmoghaddam, Farid</creatorcontrib><creatorcontrib>Nycz, Christopher</creatorcontrib><creatorcontrib>Jeannotte, Erin</creatorcontrib><creatorcontrib>Mane, Shweta</creatorcontrib><creatorcontrib>Nalwalk, Julia</creatorcontrib><creatorcontrib>Burdette, E Clif</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><creatorcontrib>Yeo, Desmond</creatorcontrib><creatorcontrib>Pilitsis, Julie</creatorcontrib><creatorcontrib>Fischer, Gregory S</creatorcontrib><title>Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation</title><title>ArXiv.org</title><addtitle>ArXiv</addtitle><description>Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884°C (3.71%) and 0.0631 cm (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.</description><issn>2331-8422</issn><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkN1LwzAUxYMobsz9C5JHXwpp0qTN49zmB0x8qQOfym1z6yJpU5vWj__eohN8ugfu7xwO54TMuRBxlCWcn_7TM7IM4ZUxxlXKpRTnZCY0T3Um5Jw8bxA7et2DbemTG3oIfmwNXZUOButbmh-wb8DRjQ9IH7xBZ9sX-mGHA50ce_vu6fazw9422A4TtwdnzY_1gpzV4AIuj3dB8pttvr6Ldo-39-vVLuqkkpFWJTBkUlQg48yYdBKxziSaWmQ11JVRPKkqLaZfmZRMmVIzrQCSiguWpmJBrn5ju96_jRiGorGhQuegRT-GQsRMJporpSf08oiOZYOm6KbW0H8Vf2uIb7B_Xas</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Zhao, Zhanyue</creator><creator>Szewczyk, Benjamin</creator><creator>Tarasek, Matthew</creator><creator>Bales, Charles</creator><creator>Wang, Yang</creator><creator>Liu, Ming</creator><creator>Jiang, Yiwei</creator><creator>Bhushan, Chitresh</creator><creator>Fiveland, Eric</creator><creator>Campwala, Zahabiya</creator><creator>Trowbridge, Rachel</creator><creator>Johansen, Phillip M</creator><creator>Olmsted, Zachary</creator><creator>Ghoshal, Goutam</creator><creator>Heffter, Tamas</creator><creator>Gandomi, Katie</creator><creator>Tavakkolmoghaddam, Farid</creator><creator>Nycz, Christopher</creator><creator>Jeannotte, Erin</creator><creator>Mane, Shweta</creator><creator>Nalwalk, Julia</creator><creator>Burdette, E Clif</creator><creator>Qian, Jiang</creator><creator>Yeo, Desmond</creator><creator>Pilitsis, Julie</creator><creator>Fischer, Gregory S</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20240905</creationdate><title>Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation</title><author>Zhao, Zhanyue ; Szewczyk, Benjamin ; Tarasek, Matthew ; Bales, Charles ; Wang, Yang ; Liu, Ming ; Jiang, Yiwei ; Bhushan, Chitresh ; Fiveland, Eric ; Campwala, Zahabiya ; Trowbridge, Rachel ; Johansen, Phillip M ; Olmsted, Zachary ; Ghoshal, Goutam ; Heffter, Tamas ; Gandomi, Katie ; Tavakkolmoghaddam, Farid ; Nycz, Christopher ; Jeannotte, Erin ; Mane, Shweta ; Nalwalk, Julia ; Burdette, E Clif ; Qian, Jiang ; Yeo, Desmond ; Pilitsis, Julie ; Fischer, Gregory S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p565-96ba0e053ca518dd73ca1985edf38fafcd624cc938ddb4b06db9096aa4c230773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhanyue</creatorcontrib><creatorcontrib>Szewczyk, Benjamin</creatorcontrib><creatorcontrib>Tarasek, Matthew</creatorcontrib><creatorcontrib>Bales, Charles</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Jiang, Yiwei</creatorcontrib><creatorcontrib>Bhushan, Chitresh</creatorcontrib><creatorcontrib>Fiveland, Eric</creatorcontrib><creatorcontrib>Campwala, Zahabiya</creatorcontrib><creatorcontrib>Trowbridge, Rachel</creatorcontrib><creatorcontrib>Johansen, Phillip M</creatorcontrib><creatorcontrib>Olmsted, Zachary</creatorcontrib><creatorcontrib>Ghoshal, Goutam</creatorcontrib><creatorcontrib>Heffter, Tamas</creatorcontrib><creatorcontrib>Gandomi, Katie</creatorcontrib><creatorcontrib>Tavakkolmoghaddam, Farid</creatorcontrib><creatorcontrib>Nycz, Christopher</creatorcontrib><creatorcontrib>Jeannotte, Erin</creatorcontrib><creatorcontrib>Mane, Shweta</creatorcontrib><creatorcontrib>Nalwalk, Julia</creatorcontrib><creatorcontrib>Burdette, E Clif</creatorcontrib><creatorcontrib>Qian, Jiang</creatorcontrib><creatorcontrib>Yeo, Desmond</creatorcontrib><creatorcontrib>Pilitsis, Julie</creatorcontrib><creatorcontrib>Fischer, Gregory S</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ArXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhanyue</au><au>Szewczyk, Benjamin</au><au>Tarasek, Matthew</au><au>Bales, Charles</au><au>Wang, Yang</au><au>Liu, Ming</au><au>Jiang, Yiwei</au><au>Bhushan, Chitresh</au><au>Fiveland, Eric</au><au>Campwala, Zahabiya</au><au>Trowbridge, Rachel</au><au>Johansen, Phillip M</au><au>Olmsted, Zachary</au><au>Ghoshal, Goutam</au><au>Heffter, Tamas</au><au>Gandomi, Katie</au><au>Tavakkolmoghaddam, Farid</au><au>Nycz, Christopher</au><au>Jeannotte, Erin</au><au>Mane, Shweta</au><au>Nalwalk, Julia</au><au>Burdette, E Clif</au><au>Qian, Jiang</au><au>Yeo, Desmond</au><au>Pilitsis, Julie</au><au>Fischer, Gregory S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation</atitle><jtitle>ArXiv.org</jtitle><addtitle>ArXiv</addtitle><date>2024-09-05</date><risdate>2024</risdate><issn>2331-8422</issn><eissn>2331-8422</eissn><abstract>Intracorporeal needle-based therapeutic ultrasound (NBTU) is a minimally invasive option for intervening in malignant brain tumors, commonly used in thermal ablation procedures. This technique is suitable for both primary and metastatic cancers, utilizing a high-frequency alternating electric field (up to 10 MHz) to excite a piezoelectric transducer. The resulting rapid deformation of the transducer produces an acoustic wave that propagates through tissue, leading to localized high-temperature heating at the target tumor site and inducing rapid cell death. To optimize the design of NBTU transducers for thermal dose delivery during treatment, numerical modeling of the acoustic pressure field generated by the deforming piezoelectric transducer is frequently employed. The bioheat transfer process generated by the input pressure field is used to track the thermal propagation of the applicator over time. Magnetic resonance thermal imaging (MRTI) can be used to experimentally validate these models. Validation results using MRTI demonstrated the feasibility of this model, showing a consistent thermal propagation pattern. However, a thermal damage isodose map is more advantageous for evaluating therapeutic efficacy. To achieve a more accurate simulation based on the actual brain tissue environment, a new finite element method (FEM) simulation with enhanced damage evaluation capabilities was conducted. The results showed that the highest temperature and ablated volume differed between experimental and simulation results by 2.1884°C (3.71%) and 0.0631 cm (5.74%), respectively. The lowest Pearson correlation coefficient (PCC) for peak temperature was 0.7117, and the lowest Dice coefficient for the ablated area was 0.7021, indicating a good agreement in accuracy between simulation and experiment.</abstract><cop>United States</cop><pmid>39279835</pmid></addata></record>
fulltext fulltext
identifier ISSN: 2331-8422
ispartof ArXiv.org, 2024-09
issn 2331-8422
2331-8422
language eng
recordid cdi_proquest_miscellaneous_3105492669
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
title Deep Brain Ultrasound Ablation Thermal Dose Modeling with in Vivo Experimental Validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A59%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Brain%20Ultrasound%20Ablation%20Thermal%20Dose%20Modeling%20with%20in%20Vivo%20Experimental%20Validation&rft.jtitle=ArXiv.org&rft.au=Zhao,%20Zhanyue&rft.date=2024-09-05&rft.issn=2331-8422&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E3105492669%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p565-96ba0e053ca518dd73ca1985edf38fafcd624cc938ddb4b06db9096aa4c230773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3105492669&rft_id=info:pmid/39279835&rfr_iscdi=true