Loading…
Unraveling the Stability and Magnetic Properties of Bis-Hydrated Mn(II) Complexes via Tailored Ligand Design
Exploring the electronic structure and dynamic behavior of Mn(II) complexes reveals fascinating magnetic properties and prospective biomedical applications. In this study, we investigate the solvent phase dynamics of heptacoordinated Mn(II) complexes through ab initio molecular dynamics simulation...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-10, Vol.128 (39), p.8346-8359 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exploring the electronic structure and dynamic behavior of Mn(II) complexes reveals fascinating magnetic properties and prospective biomedical applications. In this study, we investigate the solvent phase dynamics of heptacoordinated Mn(II) complexes through ab initio molecular dynamics simulations and density functional theory (DFT) calculations with effectively varying temperatures. We observed that the complex with high stability ([Mn(pmpa)(H2O)2]) remains relatively rigid as the temperature increases to 90 °C, with only a minor change in its radial distribution functions (RDFs), compared to the RDF peaks at 25 °C. To elucidate the impact of halogens on the magnetic anisotropy of seven-coordinated Mn(II) complexes, we performed both DFT and multireference calculations. This shows that the zero-field splitting (ZFS) parameter D follows the order D(I)> D(Br)> D(Cl). We observed a significant increase in the D-value following the substitution of soft Se-donors in the equatorial position and heavier halogens in the axial position. The D-value of halogen derivatives of Se-analogues varies in the order of D(Cl) < D(I) < D(Br), deviating from the regular spectrochemical series with the discrepancy between the covalency of the Mn(II)–Se bond and the ligand field strength. We anticipate that this study will enhance our understanding of the solvent phase dynamics and structural aspects of ZFS in various Mn(II) complexes with different electronic environments. |
---|---|
ISSN: | 1089-5639 1520-5215 1520-5215 |
DOI: | 10.1021/acs.jpca.4c03053 |