Loading…
Fertilizer reduction and biochar amendment promote soil mineral-associated organic carbon, bacterial activity, and enzyme activity in a jasmine garden in southeast China
Reducing chemical fertilizers and biochar amendment is essential for achieving carbon neutrality, addressing global warming, and promoting sustainable agricultural development. Biochar amendment, a carbon rich soil additive produced through biomass pyrolysis, enhances soil fertility, increases crop...
Saved in:
Published in: | The Science of the total environment 2024-12, Vol.954, p.176300, Article 176300 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reducing chemical fertilizers and biochar amendment is essential for achieving carbon neutrality, addressing global warming, and promoting sustainable agricultural development. Biochar amendment, a carbon rich soil additive produced through biomass pyrolysis, enhances soil fertility, increases crop yield, and improves soil carbon storage. However, research on the combined effect of fertilizer reduction and biochar amendment on soil mineral associated organic carbon (MAOC) in jasmine gardens is limited. This study aims to determine if biochar can reduce industrial fertilizer usage without compromising soil quality. This study focuses on jasmine cultivation in southeastern China, employing four treatments: conventional fertilization (CK), biochar amendment without fertilizer (BA), fertilizer reduction (FR), and fertilizer reduction with biochar amendment (FRBA). The effects on MAOC, microbial abundance, and enzyme activity were investigated. The FRBA treatment significantly increased MAOC content by 19.98 % compared to CK (P |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.176300 |