Loading…
Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model
Abstract Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of fa...
Saved in:
Published in: | Toxicological sciences 2024-12, Vol.202 (2), p.179-195 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693 |
container_end_page | 195 |
container_issue | 2 |
container_start_page | 179 |
container_title | Toxicological sciences |
container_volume | 202 |
creator | Taylor, Rulaiha Basaly, Veronia Kong, Bo Yang, Ill Brinker, Anita M Capece, Gina Bhattacharya, Anisha Henry, Zakiyah R Otersen, Katherine Yang, Zhenning Meadows, Vik Mera, Stephanie Joseph, Laurie B Zhou, Peihong Aleksunes, Lauren M Roepke, Troy Buckley, Brian Guo, Grace L |
description | Abstract
Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet.
Graphical abstract |
doi_str_mv | 10.1093/toxsci/kfae110 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107505455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/toxsci/kfae110</oup_id><sourcerecordid>3107505455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1URD_g2iPysRzSjp04qY-oammlSlzgHE3ssWrqxCF2lu5_4cfi1S70yMVjjZ73ka2XsXMBlwJ0fZXjSzL-6tkhCQFv2EnZthVoqY8O9xau4ZidpvQDQIgW9Dt2XOsaZCfrE_b71jkyOfHoeH6iBWdaszcYwpbjPC9xQ5b7yfqNtysGPvhAHI23JTHtEtzShkKcR5ryTjJSxiEGb7jdJrdOJvs4VZhSNB5zkaVMmOMTzZh99okjD_HXq5ePcU1UTkvhPXvrMCT6cJhn7Pvd7beb--rx65eHm8-PlZGiyZUybmhbbTQNUolBddeyqyVh21qpwABop1TTaNM4spJk0wnscNCqIwslWJ-xi723_PfnSin3o0-GQsCJymv6WkCnQDVKFfRyj5olprSQ6-fFj7hsewH9rpF-30h_aKQEPh7c6zCS_Yf_raAAn_ZAXOf_yf4A_V2bxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107505455</pqid></control><display><type>article</type><title>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</title><source>Oxford Journals Online</source><creator>Taylor, Rulaiha ; Basaly, Veronia ; Kong, Bo ; Yang, Ill ; Brinker, Anita M ; Capece, Gina ; Bhattacharya, Anisha ; Henry, Zakiyah R ; Otersen, Katherine ; Yang, Zhenning ; Meadows, Vik ; Mera, Stephanie ; Joseph, Laurie B ; Zhou, Peihong ; Aleksunes, Lauren M ; Roepke, Troy ; Buckley, Brian ; Guo, Grace L</creator><creatorcontrib>Taylor, Rulaiha ; Basaly, Veronia ; Kong, Bo ; Yang, Ill ; Brinker, Anita M ; Capece, Gina ; Bhattacharya, Anisha ; Henry, Zakiyah R ; Otersen, Katherine ; Yang, Zhenning ; Meadows, Vik ; Mera, Stephanie ; Joseph, Laurie B ; Zhou, Peihong ; Aleksunes, Lauren M ; Roepke, Troy ; Buckley, Brian ; Guo, Grace L</creatorcontrib><description>Abstract
Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet.
Graphical abstract</description><identifier>ISSN: 1096-6080</identifier><identifier>ISSN: 1096-0929</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfae110</identifier><identifier>PMID: 39302723</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Bile Acids and Salts - metabolism ; Cholestanetriol 26-Monooxygenase - genetics ; Cholestanetriol 26-Monooxygenase - metabolism ; Cholesterol 7-alpha-Hydroxylase - genetics ; Cholesterol 7-alpha-Hydroxylase - metabolism ; Cholic Acid ; Deoxycholic Acid - toxicity ; Disease Models, Animal ; Fatty Liver - chemically induced ; Fatty Liver - metabolism ; Lipid Metabolism - drug effects ; Liver - drug effects ; Liver - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Non-alcoholic Fatty Liver Disease - chemically induced ; Non-alcoholic Fatty Liver Disease - metabolism ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; Ursodeoxycholic Acid - pharmacology</subject><ispartof>Toxicological sciences, 2024-12, Vol.202 (2), p.179-195</ispartof><rights>Published by Oxford University Press on behalf of the Society of Toxicology 2024. 2024</rights><rights>Published by Oxford University Press on behalf of the Society of Toxicology 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693</cites><orcidid>0000-0002-8983-4305 ; 0000-0002-8200-7817 ; 0000-0002-0032-1037 ; 0000-0002-6272-8115 ; 0000-0002-3483-0235 ; 0000-0002-2185-8183 ; 0000-0003-0989-5544 ; 0000-0002-5886-5985 ; 0000-0001-5921-110X ; 0000-0002-5665-6012 ; 0000-0002-6300-2076 ; 0000-0002-1830-4809 ; 0000-0002-0561-3653 ; 0000-0001-5426-2266 ; 0000-0002-2666-0635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39302723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Rulaiha</creatorcontrib><creatorcontrib>Basaly, Veronia</creatorcontrib><creatorcontrib>Kong, Bo</creatorcontrib><creatorcontrib>Yang, Ill</creatorcontrib><creatorcontrib>Brinker, Anita M</creatorcontrib><creatorcontrib>Capece, Gina</creatorcontrib><creatorcontrib>Bhattacharya, Anisha</creatorcontrib><creatorcontrib>Henry, Zakiyah R</creatorcontrib><creatorcontrib>Otersen, Katherine</creatorcontrib><creatorcontrib>Yang, Zhenning</creatorcontrib><creatorcontrib>Meadows, Vik</creatorcontrib><creatorcontrib>Mera, Stephanie</creatorcontrib><creatorcontrib>Joseph, Laurie B</creatorcontrib><creatorcontrib>Zhou, Peihong</creatorcontrib><creatorcontrib>Aleksunes, Lauren M</creatorcontrib><creatorcontrib>Roepke, Troy</creatorcontrib><creatorcontrib>Buckley, Brian</creatorcontrib><creatorcontrib>Guo, Grace L</creatorcontrib><title>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</title><title>Toxicological sciences</title><addtitle>Toxicol Sci</addtitle><description>Abstract
Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet.
Graphical abstract</description><subject>Animals</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Cholestanetriol 26-Monooxygenase - genetics</subject><subject>Cholestanetriol 26-Monooxygenase - metabolism</subject><subject>Cholesterol 7-alpha-Hydroxylase - genetics</subject><subject>Cholesterol 7-alpha-Hydroxylase - metabolism</subject><subject>Cholic Acid</subject><subject>Deoxycholic Acid - toxicity</subject><subject>Disease Models, Animal</subject><subject>Fatty Liver - chemically induced</subject><subject>Fatty Liver - metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Non-alcoholic Fatty Liver Disease - chemically induced</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Ursodeoxycholic Acid - pharmacology</subject><issn>1096-6080</issn><issn>1096-0929</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1URD_g2iPysRzSjp04qY-oammlSlzgHE3ssWrqxCF2lu5_4cfi1S70yMVjjZ73ka2XsXMBlwJ0fZXjSzL-6tkhCQFv2EnZthVoqY8O9xau4ZidpvQDQIgW9Dt2XOsaZCfrE_b71jkyOfHoeH6iBWdaszcYwpbjPC9xQ5b7yfqNtysGPvhAHI23JTHtEtzShkKcR5ryTjJSxiEGb7jdJrdOJvs4VZhSNB5zkaVMmOMTzZh99okjD_HXq5ePcU1UTkvhPXvrMCT6cJhn7Pvd7beb--rx65eHm8-PlZGiyZUybmhbbTQNUolBddeyqyVh21qpwABop1TTaNM4spJk0wnscNCqIwslWJ-xi723_PfnSin3o0-GQsCJymv6WkCnQDVKFfRyj5olprSQ6-fFj7hsewH9rpF-30h_aKQEPh7c6zCS_Yf_raAAn_ZAXOf_yf4A_V2bxg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Taylor, Rulaiha</creator><creator>Basaly, Veronia</creator><creator>Kong, Bo</creator><creator>Yang, Ill</creator><creator>Brinker, Anita M</creator><creator>Capece, Gina</creator><creator>Bhattacharya, Anisha</creator><creator>Henry, Zakiyah R</creator><creator>Otersen, Katherine</creator><creator>Yang, Zhenning</creator><creator>Meadows, Vik</creator><creator>Mera, Stephanie</creator><creator>Joseph, Laurie B</creator><creator>Zhou, Peihong</creator><creator>Aleksunes, Lauren M</creator><creator>Roepke, Troy</creator><creator>Buckley, Brian</creator><creator>Guo, Grace L</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8983-4305</orcidid><orcidid>https://orcid.org/0000-0002-8200-7817</orcidid><orcidid>https://orcid.org/0000-0002-0032-1037</orcidid><orcidid>https://orcid.org/0000-0002-6272-8115</orcidid><orcidid>https://orcid.org/0000-0002-3483-0235</orcidid><orcidid>https://orcid.org/0000-0002-2185-8183</orcidid><orcidid>https://orcid.org/0000-0003-0989-5544</orcidid><orcidid>https://orcid.org/0000-0002-5886-5985</orcidid><orcidid>https://orcid.org/0000-0001-5921-110X</orcidid><orcidid>https://orcid.org/0000-0002-5665-6012</orcidid><orcidid>https://orcid.org/0000-0002-6300-2076</orcidid><orcidid>https://orcid.org/0000-0002-1830-4809</orcidid><orcidid>https://orcid.org/0000-0002-0561-3653</orcidid><orcidid>https://orcid.org/0000-0001-5426-2266</orcidid><orcidid>https://orcid.org/0000-0002-2666-0635</orcidid></search><sort><creationdate>20241201</creationdate><title>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</title><author>Taylor, Rulaiha ; Basaly, Veronia ; Kong, Bo ; Yang, Ill ; Brinker, Anita M ; Capece, Gina ; Bhattacharya, Anisha ; Henry, Zakiyah R ; Otersen, Katherine ; Yang, Zhenning ; Meadows, Vik ; Mera, Stephanie ; Joseph, Laurie B ; Zhou, Peihong ; Aleksunes, Lauren M ; Roepke, Troy ; Buckley, Brian ; Guo, Grace L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Cholestanetriol 26-Monooxygenase - genetics</topic><topic>Cholestanetriol 26-Monooxygenase - metabolism</topic><topic>Cholesterol 7-alpha-Hydroxylase - genetics</topic><topic>Cholesterol 7-alpha-Hydroxylase - metabolism</topic><topic>Cholic Acid</topic><topic>Deoxycholic Acid - toxicity</topic><topic>Disease Models, Animal</topic><topic>Fatty Liver - chemically induced</topic><topic>Fatty Liver - metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Non-alcoholic Fatty Liver Disease - chemically induced</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Ursodeoxycholic Acid - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Rulaiha</creatorcontrib><creatorcontrib>Basaly, Veronia</creatorcontrib><creatorcontrib>Kong, Bo</creatorcontrib><creatorcontrib>Yang, Ill</creatorcontrib><creatorcontrib>Brinker, Anita M</creatorcontrib><creatorcontrib>Capece, Gina</creatorcontrib><creatorcontrib>Bhattacharya, Anisha</creatorcontrib><creatorcontrib>Henry, Zakiyah R</creatorcontrib><creatorcontrib>Otersen, Katherine</creatorcontrib><creatorcontrib>Yang, Zhenning</creatorcontrib><creatorcontrib>Meadows, Vik</creatorcontrib><creatorcontrib>Mera, Stephanie</creatorcontrib><creatorcontrib>Joseph, Laurie B</creatorcontrib><creatorcontrib>Zhou, Peihong</creatorcontrib><creatorcontrib>Aleksunes, Lauren M</creatorcontrib><creatorcontrib>Roepke, Troy</creatorcontrib><creatorcontrib>Buckley, Brian</creatorcontrib><creatorcontrib>Guo, Grace L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Rulaiha</au><au>Basaly, Veronia</au><au>Kong, Bo</au><au>Yang, Ill</au><au>Brinker, Anita M</au><au>Capece, Gina</au><au>Bhattacharya, Anisha</au><au>Henry, Zakiyah R</au><au>Otersen, Katherine</au><au>Yang, Zhenning</au><au>Meadows, Vik</au><au>Mera, Stephanie</au><au>Joseph, Laurie B</au><au>Zhou, Peihong</au><au>Aleksunes, Lauren M</au><au>Roepke, Troy</au><au>Buckley, Brian</au><au>Guo, Grace L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>202</volume><issue>2</issue><spage>179</spage><epage>195</epage><pages>179-195</pages><issn>1096-6080</issn><issn>1096-0929</issn><eissn>1096-0929</eissn><abstract>Abstract
Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet.
Graphical abstract</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>39302723</pmid><doi>10.1093/toxsci/kfae110</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8983-4305</orcidid><orcidid>https://orcid.org/0000-0002-8200-7817</orcidid><orcidid>https://orcid.org/0000-0002-0032-1037</orcidid><orcidid>https://orcid.org/0000-0002-6272-8115</orcidid><orcidid>https://orcid.org/0000-0002-3483-0235</orcidid><orcidid>https://orcid.org/0000-0002-2185-8183</orcidid><orcidid>https://orcid.org/0000-0003-0989-5544</orcidid><orcidid>https://orcid.org/0000-0002-5886-5985</orcidid><orcidid>https://orcid.org/0000-0001-5921-110X</orcidid><orcidid>https://orcid.org/0000-0002-5665-6012</orcidid><orcidid>https://orcid.org/0000-0002-6300-2076</orcidid><orcidid>https://orcid.org/0000-0002-1830-4809</orcidid><orcidid>https://orcid.org/0000-0002-0561-3653</orcidid><orcidid>https://orcid.org/0000-0001-5426-2266</orcidid><orcidid>https://orcid.org/0000-0002-2666-0635</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-6080 |
ispartof | Toxicological sciences, 2024-12, Vol.202 (2), p.179-195 |
issn | 1096-6080 1096-0929 1096-0929 |
language | eng |
recordid | cdi_proquest_miscellaneous_3107505455 |
source | Oxford Journals Online |
subjects | Animals Bile Acids and Salts - metabolism Cholestanetriol 26-Monooxygenase - genetics Cholestanetriol 26-Monooxygenase - metabolism Cholesterol 7-alpha-Hydroxylase - genetics Cholesterol 7-alpha-Hydroxylase - metabolism Cholic Acid Deoxycholic Acid - toxicity Disease Models, Animal Fatty Liver - chemically induced Fatty Liver - metabolism Lipid Metabolism - drug effects Liver - drug effects Liver - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Non-alcoholic Fatty Liver Disease - chemically induced Non-alcoholic Fatty Liver Disease - metabolism Receptors, Cytoplasmic and Nuclear - genetics Receptors, Cytoplasmic and Nuclear - metabolism Ursodeoxycholic Acid - pharmacology |
title | Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20therapeutically%20approved%20individual%20bile%20acids%20on%20the%20development%20of%20metabolic%20dysfunction-associated%20steatohepatitis%20a%20low%20bile%20acid%20mouse%20model&rft.jtitle=Toxicological%20sciences&rft.au=Taylor,%20Rulaiha&rft.date=2024-12-01&rft.volume=202&rft.issue=2&rft.spage=179&rft.epage=195&rft.pages=179-195&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfae110&rft_dat=%3Cproquest_cross%3E3107505455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3107505455&rft_id=info:pmid/39302723&rft_oup_id=10.1093/toxsci/kfae110&rfr_iscdi=true |