Loading…

Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model

Abstract Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of fa...

Full description

Saved in:
Bibliographic Details
Published in:Toxicological sciences 2024-12, Vol.202 (2), p.179-195
Main Authors: Taylor, Rulaiha, Basaly, Veronia, Kong, Bo, Yang, Ill, Brinker, Anita M, Capece, Gina, Bhattacharya, Anisha, Henry, Zakiyah R, Otersen, Katherine, Yang, Zhenning, Meadows, Vik, Mera, Stephanie, Joseph, Laurie B, Zhou, Peihong, Aleksunes, Lauren M, Roepke, Troy, Buckley, Brian, Guo, Grace L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693
container_end_page 195
container_issue 2
container_start_page 179
container_title Toxicological sciences
container_volume 202
creator Taylor, Rulaiha
Basaly, Veronia
Kong, Bo
Yang, Ill
Brinker, Anita M
Capece, Gina
Bhattacharya, Anisha
Henry, Zakiyah R
Otersen, Katherine
Yang, Zhenning
Meadows, Vik
Mera, Stephanie
Joseph, Laurie B
Zhou, Peihong
Aleksunes, Lauren M
Roepke, Troy
Buckley, Brian
Guo, Grace L
description Abstract Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet. Graphical abstract
doi_str_mv 10.1093/toxsci/kfae110
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3107505455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/toxsci/kfae110</oup_id><sourcerecordid>3107505455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1URD_g2iPysRzSjp04qY-oammlSlzgHE3ssWrqxCF2lu5_4cfi1S70yMVjjZ73ka2XsXMBlwJ0fZXjSzL-6tkhCQFv2EnZthVoqY8O9xau4ZidpvQDQIgW9Dt2XOsaZCfrE_b71jkyOfHoeH6iBWdaszcYwpbjPC9xQ5b7yfqNtysGPvhAHI23JTHtEtzShkKcR5ryTjJSxiEGb7jdJrdOJvs4VZhSNB5zkaVMmOMTzZh99okjD_HXq5ePcU1UTkvhPXvrMCT6cJhn7Pvd7beb--rx65eHm8-PlZGiyZUybmhbbTQNUolBddeyqyVh21qpwABop1TTaNM4spJk0wnscNCqIwslWJ-xi723_PfnSin3o0-GQsCJymv6WkCnQDVKFfRyj5olprSQ6-fFj7hsewH9rpF-30h_aKQEPh7c6zCS_Yf_raAAn_ZAXOf_yf4A_V2bxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107505455</pqid></control><display><type>article</type><title>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</title><source>Oxford Journals Online</source><creator>Taylor, Rulaiha ; Basaly, Veronia ; Kong, Bo ; Yang, Ill ; Brinker, Anita M ; Capece, Gina ; Bhattacharya, Anisha ; Henry, Zakiyah R ; Otersen, Katherine ; Yang, Zhenning ; Meadows, Vik ; Mera, Stephanie ; Joseph, Laurie B ; Zhou, Peihong ; Aleksunes, Lauren M ; Roepke, Troy ; Buckley, Brian ; Guo, Grace L</creator><creatorcontrib>Taylor, Rulaiha ; Basaly, Veronia ; Kong, Bo ; Yang, Ill ; Brinker, Anita M ; Capece, Gina ; Bhattacharya, Anisha ; Henry, Zakiyah R ; Otersen, Katherine ; Yang, Zhenning ; Meadows, Vik ; Mera, Stephanie ; Joseph, Laurie B ; Zhou, Peihong ; Aleksunes, Lauren M ; Roepke, Troy ; Buckley, Brian ; Guo, Grace L</creatorcontrib><description>Abstract Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet. Graphical abstract</description><identifier>ISSN: 1096-6080</identifier><identifier>ISSN: 1096-0929</identifier><identifier>EISSN: 1096-0929</identifier><identifier>DOI: 10.1093/toxsci/kfae110</identifier><identifier>PMID: 39302723</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Animals ; Bile Acids and Salts - metabolism ; Cholestanetriol 26-Monooxygenase - genetics ; Cholestanetriol 26-Monooxygenase - metabolism ; Cholesterol 7-alpha-Hydroxylase - genetics ; Cholesterol 7-alpha-Hydroxylase - metabolism ; Cholic Acid ; Deoxycholic Acid - toxicity ; Disease Models, Animal ; Fatty Liver - chemically induced ; Fatty Liver - metabolism ; Lipid Metabolism - drug effects ; Liver - drug effects ; Liver - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Non-alcoholic Fatty Liver Disease - chemically induced ; Non-alcoholic Fatty Liver Disease - metabolism ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; Ursodeoxycholic Acid - pharmacology</subject><ispartof>Toxicological sciences, 2024-12, Vol.202 (2), p.179-195</ispartof><rights>Published by Oxford University Press on behalf of the Society of Toxicology 2024. 2024</rights><rights>Published by Oxford University Press on behalf of the Society of Toxicology 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693</cites><orcidid>0000-0002-8983-4305 ; 0000-0002-8200-7817 ; 0000-0002-0032-1037 ; 0000-0002-6272-8115 ; 0000-0002-3483-0235 ; 0000-0002-2185-8183 ; 0000-0003-0989-5544 ; 0000-0002-5886-5985 ; 0000-0001-5921-110X ; 0000-0002-5665-6012 ; 0000-0002-6300-2076 ; 0000-0002-1830-4809 ; 0000-0002-0561-3653 ; 0000-0001-5426-2266 ; 0000-0002-2666-0635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39302723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taylor, Rulaiha</creatorcontrib><creatorcontrib>Basaly, Veronia</creatorcontrib><creatorcontrib>Kong, Bo</creatorcontrib><creatorcontrib>Yang, Ill</creatorcontrib><creatorcontrib>Brinker, Anita M</creatorcontrib><creatorcontrib>Capece, Gina</creatorcontrib><creatorcontrib>Bhattacharya, Anisha</creatorcontrib><creatorcontrib>Henry, Zakiyah R</creatorcontrib><creatorcontrib>Otersen, Katherine</creatorcontrib><creatorcontrib>Yang, Zhenning</creatorcontrib><creatorcontrib>Meadows, Vik</creatorcontrib><creatorcontrib>Mera, Stephanie</creatorcontrib><creatorcontrib>Joseph, Laurie B</creatorcontrib><creatorcontrib>Zhou, Peihong</creatorcontrib><creatorcontrib>Aleksunes, Lauren M</creatorcontrib><creatorcontrib>Roepke, Troy</creatorcontrib><creatorcontrib>Buckley, Brian</creatorcontrib><creatorcontrib>Guo, Grace L</creatorcontrib><title>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</title><title>Toxicological sciences</title><addtitle>Toxicol Sci</addtitle><description>Abstract Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet. Graphical abstract</description><subject>Animals</subject><subject>Bile Acids and Salts - metabolism</subject><subject>Cholestanetriol 26-Monooxygenase - genetics</subject><subject>Cholestanetriol 26-Monooxygenase - metabolism</subject><subject>Cholesterol 7-alpha-Hydroxylase - genetics</subject><subject>Cholesterol 7-alpha-Hydroxylase - metabolism</subject><subject>Cholic Acid</subject><subject>Deoxycholic Acid - toxicity</subject><subject>Disease Models, Animal</subject><subject>Fatty Liver - chemically induced</subject><subject>Fatty Liver - metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Non-alcoholic Fatty Liver Disease - chemically induced</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>Ursodeoxycholic Acid - pharmacology</subject><issn>1096-6080</issn><issn>1096-0929</issn><issn>1096-0929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1URD_g2iPysRzSjp04qY-oammlSlzgHE3ssWrqxCF2lu5_4cfi1S70yMVjjZ73ka2XsXMBlwJ0fZXjSzL-6tkhCQFv2EnZthVoqY8O9xau4ZidpvQDQIgW9Dt2XOsaZCfrE_b71jkyOfHoeH6iBWdaszcYwpbjPC9xQ5b7yfqNtysGPvhAHI23JTHtEtzShkKcR5ryTjJSxiEGb7jdJrdOJvs4VZhSNB5zkaVMmOMTzZh99okjD_HXq5ePcU1UTkvhPXvrMCT6cJhn7Pvd7beb--rx65eHm8-PlZGiyZUybmhbbTQNUolBddeyqyVh21qpwABop1TTaNM4spJk0wnscNCqIwslWJ-xi723_PfnSin3o0-GQsCJymv6WkCnQDVKFfRyj5olprSQ6-fFj7hsewH9rpF-30h_aKQEPh7c6zCS_Yf_raAAn_ZAXOf_yf4A_V2bxg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Taylor, Rulaiha</creator><creator>Basaly, Veronia</creator><creator>Kong, Bo</creator><creator>Yang, Ill</creator><creator>Brinker, Anita M</creator><creator>Capece, Gina</creator><creator>Bhattacharya, Anisha</creator><creator>Henry, Zakiyah R</creator><creator>Otersen, Katherine</creator><creator>Yang, Zhenning</creator><creator>Meadows, Vik</creator><creator>Mera, Stephanie</creator><creator>Joseph, Laurie B</creator><creator>Zhou, Peihong</creator><creator>Aleksunes, Lauren M</creator><creator>Roepke, Troy</creator><creator>Buckley, Brian</creator><creator>Guo, Grace L</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8983-4305</orcidid><orcidid>https://orcid.org/0000-0002-8200-7817</orcidid><orcidid>https://orcid.org/0000-0002-0032-1037</orcidid><orcidid>https://orcid.org/0000-0002-6272-8115</orcidid><orcidid>https://orcid.org/0000-0002-3483-0235</orcidid><orcidid>https://orcid.org/0000-0002-2185-8183</orcidid><orcidid>https://orcid.org/0000-0003-0989-5544</orcidid><orcidid>https://orcid.org/0000-0002-5886-5985</orcidid><orcidid>https://orcid.org/0000-0001-5921-110X</orcidid><orcidid>https://orcid.org/0000-0002-5665-6012</orcidid><orcidid>https://orcid.org/0000-0002-6300-2076</orcidid><orcidid>https://orcid.org/0000-0002-1830-4809</orcidid><orcidid>https://orcid.org/0000-0002-0561-3653</orcidid><orcidid>https://orcid.org/0000-0001-5426-2266</orcidid><orcidid>https://orcid.org/0000-0002-2666-0635</orcidid></search><sort><creationdate>20241201</creationdate><title>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</title><author>Taylor, Rulaiha ; Basaly, Veronia ; Kong, Bo ; Yang, Ill ; Brinker, Anita M ; Capece, Gina ; Bhattacharya, Anisha ; Henry, Zakiyah R ; Otersen, Katherine ; Yang, Zhenning ; Meadows, Vik ; Mera, Stephanie ; Joseph, Laurie B ; Zhou, Peihong ; Aleksunes, Lauren M ; Roepke, Troy ; Buckley, Brian ; Guo, Grace L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Bile Acids and Salts - metabolism</topic><topic>Cholestanetriol 26-Monooxygenase - genetics</topic><topic>Cholestanetriol 26-Monooxygenase - metabolism</topic><topic>Cholesterol 7-alpha-Hydroxylase - genetics</topic><topic>Cholesterol 7-alpha-Hydroxylase - metabolism</topic><topic>Cholic Acid</topic><topic>Deoxycholic Acid - toxicity</topic><topic>Disease Models, Animal</topic><topic>Fatty Liver - chemically induced</topic><topic>Fatty Liver - metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Non-alcoholic Fatty Liver Disease - chemically induced</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>Ursodeoxycholic Acid - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Rulaiha</creatorcontrib><creatorcontrib>Basaly, Veronia</creatorcontrib><creatorcontrib>Kong, Bo</creatorcontrib><creatorcontrib>Yang, Ill</creatorcontrib><creatorcontrib>Brinker, Anita M</creatorcontrib><creatorcontrib>Capece, Gina</creatorcontrib><creatorcontrib>Bhattacharya, Anisha</creatorcontrib><creatorcontrib>Henry, Zakiyah R</creatorcontrib><creatorcontrib>Otersen, Katherine</creatorcontrib><creatorcontrib>Yang, Zhenning</creatorcontrib><creatorcontrib>Meadows, Vik</creatorcontrib><creatorcontrib>Mera, Stephanie</creatorcontrib><creatorcontrib>Joseph, Laurie B</creatorcontrib><creatorcontrib>Zhou, Peihong</creatorcontrib><creatorcontrib>Aleksunes, Lauren M</creatorcontrib><creatorcontrib>Roepke, Troy</creatorcontrib><creatorcontrib>Buckley, Brian</creatorcontrib><creatorcontrib>Guo, Grace L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Toxicological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Rulaiha</au><au>Basaly, Veronia</au><au>Kong, Bo</au><au>Yang, Ill</au><au>Brinker, Anita M</au><au>Capece, Gina</au><au>Bhattacharya, Anisha</au><au>Henry, Zakiyah R</au><au>Otersen, Katherine</au><au>Yang, Zhenning</au><au>Meadows, Vik</au><au>Mera, Stephanie</au><au>Joseph, Laurie B</au><au>Zhou, Peihong</au><au>Aleksunes, Lauren M</au><au>Roepke, Troy</au><au>Buckley, Brian</au><au>Guo, Grace L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model</atitle><jtitle>Toxicological sciences</jtitle><addtitle>Toxicol Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>202</volume><issue>2</issue><spage>179</spage><epage>195</epage><pages>179-195</pages><issn>1096-6080</issn><issn>1096-0929</issn><eissn>1096-0929</eissn><abstract>Abstract Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet. Graphical abstract</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>39302723</pmid><doi>10.1093/toxsci/kfae110</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8983-4305</orcidid><orcidid>https://orcid.org/0000-0002-8200-7817</orcidid><orcidid>https://orcid.org/0000-0002-0032-1037</orcidid><orcidid>https://orcid.org/0000-0002-6272-8115</orcidid><orcidid>https://orcid.org/0000-0002-3483-0235</orcidid><orcidid>https://orcid.org/0000-0002-2185-8183</orcidid><orcidid>https://orcid.org/0000-0003-0989-5544</orcidid><orcidid>https://orcid.org/0000-0002-5886-5985</orcidid><orcidid>https://orcid.org/0000-0001-5921-110X</orcidid><orcidid>https://orcid.org/0000-0002-5665-6012</orcidid><orcidid>https://orcid.org/0000-0002-6300-2076</orcidid><orcidid>https://orcid.org/0000-0002-1830-4809</orcidid><orcidid>https://orcid.org/0000-0002-0561-3653</orcidid><orcidid>https://orcid.org/0000-0001-5426-2266</orcidid><orcidid>https://orcid.org/0000-0002-2666-0635</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1096-6080
ispartof Toxicological sciences, 2024-12, Vol.202 (2), p.179-195
issn 1096-6080
1096-0929
1096-0929
language eng
recordid cdi_proquest_miscellaneous_3107505455
source Oxford Journals Online
subjects Animals
Bile Acids and Salts - metabolism
Cholestanetriol 26-Monooxygenase - genetics
Cholestanetriol 26-Monooxygenase - metabolism
Cholesterol 7-alpha-Hydroxylase - genetics
Cholesterol 7-alpha-Hydroxylase - metabolism
Cholic Acid
Deoxycholic Acid - toxicity
Disease Models, Animal
Fatty Liver - chemically induced
Fatty Liver - metabolism
Lipid Metabolism - drug effects
Liver - drug effects
Liver - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Non-alcoholic Fatty Liver Disease - chemically induced
Non-alcoholic Fatty Liver Disease - metabolism
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - metabolism
Ursodeoxycholic Acid - pharmacology
title Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20therapeutically%20approved%20individual%20bile%20acids%20on%20the%20development%20of%20metabolic%20dysfunction-associated%20steatohepatitis%20a%20low%20bile%20acid%20mouse%20model&rft.jtitle=Toxicological%20sciences&rft.au=Taylor,%20Rulaiha&rft.date=2024-12-01&rft.volume=202&rft.issue=2&rft.spage=179&rft.epage=195&rft.pages=179-195&rft.issn=1096-6080&rft.eissn=1096-0929&rft_id=info:doi/10.1093/toxsci/kfae110&rft_dat=%3Cproquest_cross%3E3107505455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c214t-5cfb669c9eb251b5782732ea66d250c009f55449c4fed2e2471a7ab957ed06693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3107505455&rft_id=info:pmid/39302723&rft_oup_id=10.1093/toxsci/kfae110&rfr_iscdi=true