Loading…
Scalable mesoporous biochars from bagasse waste for Cu (II) removal: Process optimisation, kinetics and techno-economic analysis
As the world faces the brink of climatological disaster, it is crucial to utilize all available resources to facilitate environmental remediation, especially by accommodating waste streams. Lignocellulosic waste residues can be transformed into mesoporous biochar structures with substantial pore cap...
Saved in:
Published in: | Journal of environmental management 2024-11, Vol.370, p.122558, Article 122558 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As the world faces the brink of climatological disaster, it is crucial to utilize all available resources to facilitate environmental remediation, especially by accommodating waste streams. Lignocellulosic waste residues can be transformed into mesoporous biochar structures with substantial pore capacity. While biochars are considered a method of carbon dioxide removal (CDR), they are in fact an environmental double-edged sword that can be used to extract metal ions from water bodies. Biochars possess high chemical affinities through chemisorption pathways that are tuneable to specific pH conditions. This work demonstrates how biochars can be enhanced to maximise their surface area and porosity for the removal of Cu (II) in solution. It was found that bagasse derived mesoporous biochars operate preferentially at high pH (basic conditions), with the 1.18 mKOH/mSCB material reaching 97.85% Cu (II) removal in 5 min. This result is in stark contrast with the majority of biochar adsorbents that are only effective at low pH (acidic conditions). As a result, the biochars produced in this work can be directly applied to ancestral landfill sites and carbonate-rich mine waters which are highly basic by nature, preventing further metal infiltration and reverse sullied water supplies. Furthermore, to assess the value in the use of biochars produced and applied in this way, a techno-economic assessment was carried out to determine the true cost of biochar synthesis, with possible routes for revenue post-Cu being removed from the biochar.
[Display omitted]
•Activated bagasse chars were found to efficiently extract Cu (II) from solution.•KOH bagasse activation provided a customizable route to structure development.•Biochars in this work operated effectively in basic media, unlike the wider literature.•RSM modelled the reaction, indicating an optimised char with superior performance.•Cu (II) rate of uptake is directly proportional to available adsorbent surface area. |
---|---|
ISSN: | 0301-4797 1095-8630 1095-8630 |
DOI: | 10.1016/j.jenvman.2024.122558 |