Loading…

Thermal and mechanical properties of high-performance polyester nanobiocomposites reinforced with pre-treated sunn hemp fiber for automotive applications

The objective of this study is to create high-performance nano biocomposites by utilizing unsaturated polyester resin (PE) reinforced with pre-treated short (2 cm) lengthened sunn hemp (SH) fibers and by incorporating 5 % nanoclay (hydrophilic bentonite) through the compression molding technique. Th...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-11, Vol.280 (Pt 2), p.135591, Article 135591
Main Authors: Arumugam, Gandarvakottai Senthilkumar, Arumugam, Chinnappa, Damodharan, Kannan, Sathish Kumar, R., Gummadi, Sathyanarayana N., Muthusamy, Sarojadevi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study is to create high-performance nano biocomposites by utilizing unsaturated polyester resin (PE) reinforced with pre-treated short (2 cm) lengthened sunn hemp (SH) fibers and by incorporating 5 % nanoclay (hydrophilic bentonite) through the compression molding technique. The addition of 5 % nanoclay to the biocomposite significantly increased the flexural strength by approximately 165 % for H2O2-treated SH fiber and 148 % for KMnO4-treated SH fiber, when compared to untreated fibers. This enhancement was achieved through phase separation, intercalation, and exfoliation between the SH fibers, polyester resin (PE), and 5 % nanoclay. In particular, the H2O2-treated SH fiber nanobiocomposite exhibited a 43 % higher flexural strength compared to its corresponding biocomposite. The incorporation of nanoclay significantly decreased the water absorption of the bio-composites from 11.86 % in the untreated samples to a minimum of 2.76 % in the H2O2-treated SH/PE nanobiocomposite. The study suggests that short SH fiber/PE/nanoclay nanobiocomposites could be used as effective alternatives to synthetic composites in various applications, including the aerospace industry, household products, and automotive interior components such as side panels, seat frames, and central consoles. Additionally, they could be utilized in exterior parts like door panels and dashboards. [Display omitted]
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.135591