Loading…

Spatiotemporal EP4-fibulin-1 expression is associated with vascular intimal hyperplasia

Cyclooxygenase-2-derived prostaglandin E2 (PGE2) is thought to promote vascular intimal hyperplasia (IH). It has been reported that the PGE2 receptor EP4 is upregulated in injured vessels, and that EP4 signaling in vascular smooth muscle cells (VSMCs) promotes IH. In contrast, EP4 in endothelial cel...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular research 2024-09
Main Authors: Okumura, Shigekuni, Oka, Sayuki, Sasaki, Takako, Cooley, Marion A, Hidaka, Yuko, Inoue, Hana, Nishijima, Hitoshi, Ohno, Shin-Ichiro, Tanifuji, Shota, Kaneko, Mari, Abe, Takaya, Kuroda, Masahiko, Yokosuka, Tadashi, Breyer, Richard M, Homma, Hiroshi, Kato, Yuko, Yokoyama, Utako
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cyclooxygenase-2-derived prostaglandin E2 (PGE2) is thought to promote vascular intimal hyperplasia (IH). It has been reported that the PGE2 receptor EP4 is upregulated in injured vessels, and that EP4 signaling in vascular smooth muscle cells (VSMCs) promotes IH. In contrast, EP4 in endothelial cells has been demonstrated to restrain IH. We aimed to investigate spatiotemporal expression of EP4 and whether modulating EP4 signaling could be a viable therapeutic strategy. We generated EP4 reporter mice (Ptger4-IRES-nlsLacZ) and found temporary but prominent EP4 expression in VSMCs of the proliferative neointima 2 weeks after femoral artery wire injury. Injury-induced IH was diminished in VSMC-targeted EP4 heterozygous deficient mice (Ptger4fl/+; SM22-Cre) 2 and 4 weeks after vascular injury compared to that in SM22-Cre, whereas injury-induced IH was exacerbated in VSMC-targeted EP4-overexpressing mice (Ptger4-Tg) compared to controls (non-Tg). We then investigated the downstream signaling of EP4 in VSMCs. Stimulation of EP4 increased mRNA and protein levels of the glycoprotein fibulin-1 in Ptger4-Tg VSMCs. Fibulin-1C recombinant proteins increased VSMC proliferation and migration through transforming growth factor (TGF)-β/Smad3, and EP4-mediated proliferation and migration were attenuated in Fbln1fl/fl; SM22-Cre VSMCs and in CRISPR/Cas9-mediated Fbln1 knockdown in Ptger4-Tg VSMCs. We generated multiple deletion mutants of fibulin-1C and found that EGF-like modules 6-8 appear to be involved in fibulin-1-mediated proliferation. Among binding partners of fibulin-1, extracellular matrix protein 1 (ECM1) was also upregulated by EP4 stimulation, and fibulin-1C and ECM1 proteins additively enhanced VSMC proliferation and migration. Injury-induced IH was attenuated in VSMC-targeted fibulin-1 deletion mice (Fbln1fl/fl; SM22-Cre) compared to Fbln1fl/fl. Furthermore, systemic EP4 antagonist administration reduced injury-induced IH in wild-type mice. EP4 was upregulated in VSMCs of proliferative IH, and EP4 signaling promoted IH, at least in part through fibulin-1. An EP4 antagonist might be considered as a therapeutic strategy for IH.
ISSN:0008-6363
1755-3245
1755-3245
DOI:10.1093/cvr/cvae211