Loading…

A Multi-bit ECRAM-Based Analog Neuromorphic System with High-Precision Current Readout Achieving 97.3% Inference Accuracy

This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical circuits and systems 2024-09, Vol.PP, p.1-14
Main Authors: Um, Minseong, Kang, Minil, Eom, Kyeongho, Kwak, Hyunjeong, Noh, Kyungmi, Lee, Jimin, Son, Jeonghoon, Kwon, Jiseok, Kim, Seyoung, Lee, Hyung-Min
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on biomedical circuits and systems
container_volume PP
creator Um, Minseong
Kang, Minil
Eom, Kyeongho
Kwak, Hyunjeong
Noh, Kyungmi
Lee, Jimin
Son, Jeonghoon
Kwon, Jiseok
Kim, Seyoung
Lee, Hyung-Min
description This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 x 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 x 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 x 10) mapped to the ECRAM.
doi_str_mv 10.1109/TBCAS.2024.3465610
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3108762432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10685457</ieee_id><sourcerecordid>3108762432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1209-c9cb94d090a2e8607b2b293b34bcf7e5edd8629bedebb4d4ef9f39f0ea51d3ab3</originalsourceid><addsrcrecordid>eNpNkVlLw0AQxxdRPKpfQET2RfAlda8k3ccYvMCLqs9hj0m7kqPuJkq_vamt4tMMzG_-ML9B6JiSMaVEXrxe5tnLmBEmxlwkcULJFtqnUpBISkm2Vz1nkYhFvIcOQngnJE6YZLtoj0tOmaByHy0z_NBXnYu06_BVPs0eoksVwOKsUVU7w4_Q-7Zu_WLuDH5Zhg5q_OW6Ob51s3n07MG44NoG57330HR4Csq2fYczM3fw6ZoZlumYn-G7poQBMDBMTO-VWR6inVJVAY42dYTerq9e89vo_unmLs_uI0MZkZGRRkthiSSKwSQhqWaaSa650KZMIQZrJ8NVGixoLayAUpZclgRUTC1Xmo_Q-Tp34duPHkJX1C4YqCrVQNuHglMySRMmOBtQtkaNb0PwUBYL72rllwUlxUp58aO8WCkvNsqHpdNNfq9rsH8rv44H4GQNOAD4l5hMhs-k_BsNK4Xa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108762432</pqid></control><display><type>article</type><title>A Multi-bit ECRAM-Based Analog Neuromorphic System with High-Precision Current Readout Achieving 97.3% Inference Accuracy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Um, Minseong ; Kang, Minil ; Eom, Kyeongho ; Kwak, Hyunjeong ; Noh, Kyungmi ; Lee, Jimin ; Son, Jeonghoon ; Kwon, Jiseok ; Kim, Seyoung ; Lee, Hyung-Min</creator><creatorcontrib>Um, Minseong ; Kang, Minil ; Eom, Kyeongho ; Kwak, Hyunjeong ; Noh, Kyungmi ; Lee, Jimin ; Son, Jeonghoon ; Kwon, Jiseok ; Kim, Seyoung ; Lee, Hyung-Min</creatorcontrib><description>This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 x 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 x 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 x 10) mapped to the ECRAM.</description><identifier>ISSN: 1932-4545</identifier><identifier>ISSN: 1940-9990</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2024.3465610</identifier><identifier>PMID: 39312419</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Arrays ; CMOS ; current scaling ; ECRAM ; Field programmable gate arrays ; matrix processing ; Neural networks ; neuromorphic system ; Neuromorphics ; non-volatile memory ; Nonvolatile memory ; Synapses ; Training</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2024-09, Vol.PP, p.1-14</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10685457$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39312419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Um, Minseong</creatorcontrib><creatorcontrib>Kang, Minil</creatorcontrib><creatorcontrib>Eom, Kyeongho</creatorcontrib><creatorcontrib>Kwak, Hyunjeong</creatorcontrib><creatorcontrib>Noh, Kyungmi</creatorcontrib><creatorcontrib>Lee, Jimin</creatorcontrib><creatorcontrib>Son, Jeonghoon</creatorcontrib><creatorcontrib>Kwon, Jiseok</creatorcontrib><creatorcontrib>Kim, Seyoung</creatorcontrib><creatorcontrib>Lee, Hyung-Min</creatorcontrib><title>A Multi-bit ECRAM-Based Analog Neuromorphic System with High-Precision Current Readout Achieving 97.3% Inference Accuracy</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 x 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 x 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 x 10) mapped to the ECRAM.</description><subject>Arrays</subject><subject>CMOS</subject><subject>current scaling</subject><subject>ECRAM</subject><subject>Field programmable gate arrays</subject><subject>matrix processing</subject><subject>Neural networks</subject><subject>neuromorphic system</subject><subject>Neuromorphics</subject><subject>non-volatile memory</subject><subject>Nonvolatile memory</subject><subject>Synapses</subject><subject>Training</subject><issn>1932-4545</issn><issn>1940-9990</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkVlLw0AQxxdRPKpfQET2RfAlda8k3ccYvMCLqs9hj0m7kqPuJkq_vamt4tMMzG_-ML9B6JiSMaVEXrxe5tnLmBEmxlwkcULJFtqnUpBISkm2Vz1nkYhFvIcOQngnJE6YZLtoj0tOmaByHy0z_NBXnYu06_BVPs0eoksVwOKsUVU7w4_Q-7Zu_WLuDH5Zhg5q_OW6Ob51s3n07MG44NoG57330HR4Csq2fYczM3fw6ZoZlumYn-G7poQBMDBMTO-VWR6inVJVAY42dYTerq9e89vo_unmLs_uI0MZkZGRRkthiSSKwSQhqWaaSa650KZMIQZrJ8NVGixoLayAUpZclgRUTC1Xmo_Q-Tp34duPHkJX1C4YqCrVQNuHglMySRMmOBtQtkaNb0PwUBYL72rllwUlxUp58aO8WCkvNsqHpdNNfq9rsH8rv44H4GQNOAD4l5hMhs-k_BsNK4Xa</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Um, Minseong</creator><creator>Kang, Minil</creator><creator>Eom, Kyeongho</creator><creator>Kwak, Hyunjeong</creator><creator>Noh, Kyungmi</creator><creator>Lee, Jimin</creator><creator>Son, Jeonghoon</creator><creator>Kwon, Jiseok</creator><creator>Kim, Seyoung</creator><creator>Lee, Hyung-Min</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240923</creationdate><title>A Multi-bit ECRAM-Based Analog Neuromorphic System with High-Precision Current Readout Achieving 97.3% Inference Accuracy</title><author>Um, Minseong ; Kang, Minil ; Eom, Kyeongho ; Kwak, Hyunjeong ; Noh, Kyungmi ; Lee, Jimin ; Son, Jeonghoon ; Kwon, Jiseok ; Kim, Seyoung ; Lee, Hyung-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1209-c9cb94d090a2e8607b2b293b34bcf7e5edd8629bedebb4d4ef9f39f0ea51d3ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>CMOS</topic><topic>current scaling</topic><topic>ECRAM</topic><topic>Field programmable gate arrays</topic><topic>matrix processing</topic><topic>Neural networks</topic><topic>neuromorphic system</topic><topic>Neuromorphics</topic><topic>non-volatile memory</topic><topic>Nonvolatile memory</topic><topic>Synapses</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Um, Minseong</creatorcontrib><creatorcontrib>Kang, Minil</creatorcontrib><creatorcontrib>Eom, Kyeongho</creatorcontrib><creatorcontrib>Kwak, Hyunjeong</creatorcontrib><creatorcontrib>Noh, Kyungmi</creatorcontrib><creatorcontrib>Lee, Jimin</creatorcontrib><creatorcontrib>Son, Jeonghoon</creatorcontrib><creatorcontrib>Kwon, Jiseok</creatorcontrib><creatorcontrib>Kim, Seyoung</creatorcontrib><creatorcontrib>Lee, Hyung-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Um, Minseong</au><au>Kang, Minil</au><au>Eom, Kyeongho</au><au>Kwak, Hyunjeong</au><au>Noh, Kyungmi</au><au>Lee, Jimin</au><au>Son, Jeonghoon</au><au>Kwon, Jiseok</au><au>Kim, Seyoung</au><au>Lee, Hyung-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-bit ECRAM-Based Analog Neuromorphic System with High-Precision Current Readout Achieving 97.3% Inference Accuracy</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2024-09-23</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1932-4545</issn><issn>1940-9990</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This article proposes an analog neuromorphic system that enhances symmetry, linearity, and endurance by using a high-precision current readout circuit for multi-bit nonvolatile electro-chemical random-access memory (ECRAM). For on-chip training and inference, the system uses activation modules and matrix processing units to manage analog update/read paths and perform precise output sensing with feedback-based current scaling on the ECRAM array. The 250nm CMOS neuromorphic chip was tested with a 32 x 32 ECRAM synaptic array, achieving linear and symmetric updates and accurate read operations. The proposed circuit system updates the 32 x 32 ECRAM across 100 levels, maintaining consistent synaptic weights, and operates with an output error rate of up to 2.59% per column. It consumes 5.9 mW of power excluding the ECRAM array and achieves 97.3% inference accuracy on the MNIST dataset, close to the software-confirmed 97.78%, with only the final layer (64 x 10) mapped to the ECRAM.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39312419</pmid><doi>10.1109/TBCAS.2024.3465610</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2024-09, Vol.PP, p.1-14
issn 1932-4545
1940-9990
1940-9990
language eng
recordid cdi_proquest_miscellaneous_3108762432
source IEEE Electronic Library (IEL) Journals
subjects Arrays
CMOS
current scaling
ECRAM
Field programmable gate arrays
matrix processing
Neural networks
neuromorphic system
Neuromorphics
non-volatile memory
Nonvolatile memory
Synapses
Training
title A Multi-bit ECRAM-Based Analog Neuromorphic System with High-Precision Current Readout Achieving 97.3% Inference Accuracy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-bit%20ECRAM-Based%20Analog%20Neuromorphic%20System%20with%20High-Precision%20Current%20Readout%20Achieving%2097.3%25%20Inference%20Accuracy&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Um,%20Minseong&rft.date=2024-09-23&rft.volume=PP&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2024.3465610&rft_dat=%3Cproquest_cross%3E3108762432%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1209-c9cb94d090a2e8607b2b293b34bcf7e5edd8629bedebb4d4ef9f39f0ea51d3ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108762432&rft_id=info:pmid/39312419&rft_ieee_id=10685457&rfr_iscdi=true