Loading…

Zinc Vaporization Induced Formation of Desired Ni Nanoparticles Coated with Ultrathin Carbon Shells for Efficient Electrocatalytic H2 Production Coupling with Methanol Upgrading

The integration of the hydrogen evolution reaction (HER) with the methanol oxidation reaction (MOR) has been demonstrated to be a viable strategy for the energy-saving generation of H2 and value-added formate, which relies primarily on highly active and cost-effective bifunctional electrocatalysts....

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-10, Vol.16 (39), p.52326-52338
Main Authors: Hou, Kexian, Zhang, Shizhen, Yin, Peng, Liu, Tao, Cao, Yanfeng, Wang, Mingxi, Zhan, Weiting, Wu, Ling
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 52338
container_issue 39
container_start_page 52326
container_title ACS applied materials & interfaces
container_volume 16
creator Hou, Kexian
Zhang, Shizhen
Yin, Peng
Liu, Tao
Cao, Yanfeng
Wang, Mingxi
Zhan, Weiting
Wu, Ling
description The integration of the hydrogen evolution reaction (HER) with the methanol oxidation reaction (MOR) has been demonstrated to be a viable strategy for the energy-saving generation of H2 and value-added formate, which relies primarily on highly active and cost-effective bifunctional electrocatalysts. Herein, an efficient electrocatalyst consisting of controllable Ni nanoparticles (NPs) coated with ultrathin graphitic carbon shells was obtained by the pyrolysis of a Ni–Zn metal–organic framework. Intriguingly, we found that zinc vaporization not only resulted in the relatively small Ni NPs but also ultrathin carbon shells (≤3 layers). The density functional theory simulations confirmed that these ultrathin carbon shells significantly influenced electrocatalytic activity by facilitating electron transfer from the Ni core to the carbon shell. The optimized Ni1(Zn)@C demonstrated high catalytic activity for both HER and MOR, and only a low potential of 97 mV at 10 mA cm–2 was required for HER and 1.48 V at 30 mA cm–2 for MOR. In a two-electrode electrocatalytic cell measurement, a cell voltage of 1.63 V was observed at 10 mA cm–2 in the presence of methanol, 240 mV lower than that without methanol.
doi_str_mv 10.1021/acsami.4c10405
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_3108762436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108762436</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-b0b3e6db34522398884b80b0fa87dc59a27048d54fd2566ed173099a65ff4d023</originalsourceid><addsrcrecordid>eNo9kU1r3DAQhk1poWnaa886lsBu9Om1j8HZTRbyBen20IsZ6yOroJUcSSak_6r_MGodcprhYeZ9Z3ir6jvBS4IpOQWZ4GCXXBLMsfhQHZGW80VDBf343nP-ufqS0iPGNaNYHFV_f1sv0S8YQ7R_INvg0darSWqFNiEeZhIMOtfJxgJvLLoBH0aI2UqnE-oC5MKfbd6jncsR8t561EEcyuL9XjuXkAkRrY2x0mqf0dppmWOQkMG9FBV0SdFdDMX0v1kXptFZ_zBLXuu8L34O7caHCKrwr9UnAy7pb2_1uNpt1j-7y8XV7cW2O7taABEsLwY8MF2rgXFBKWubpuFDgwdsoFkpKVqgK8wbJbhRVNS1VmTFcNtCLYzhClN2XP2YdccYniadcn-wSZZ_wOswpZ4R3KxqylldRk_m0RJB_xim6MthPcH9v1z6OZf-LRf2Cgd3hR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3108762436</pqid></control><display><type>article</type><title>Zinc Vaporization Induced Formation of Desired Ni Nanoparticles Coated with Ultrathin Carbon Shells for Efficient Electrocatalytic H2 Production Coupling with Methanol Upgrading</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Hou, Kexian ; Zhang, Shizhen ; Yin, Peng ; Liu, Tao ; Cao, Yanfeng ; Wang, Mingxi ; Zhan, Weiting ; Wu, Ling</creator><creatorcontrib>Hou, Kexian ; Zhang, Shizhen ; Yin, Peng ; Liu, Tao ; Cao, Yanfeng ; Wang, Mingxi ; Zhan, Weiting ; Wu, Ling</creatorcontrib><description>The integration of the hydrogen evolution reaction (HER) with the methanol oxidation reaction (MOR) has been demonstrated to be a viable strategy for the energy-saving generation of H2 and value-added formate, which relies primarily on highly active and cost-effective bifunctional electrocatalysts. Herein, an efficient electrocatalyst consisting of controllable Ni nanoparticles (NPs) coated with ultrathin graphitic carbon shells was obtained by the pyrolysis of a Ni–Zn metal–organic framework. Intriguingly, we found that zinc vaporization not only resulted in the relatively small Ni NPs but also ultrathin carbon shells (≤3 layers). The density functional theory simulations confirmed that these ultrathin carbon shells significantly influenced electrocatalytic activity by facilitating electron transfer from the Ni core to the carbon shell. The optimized Ni1(Zn)@C demonstrated high catalytic activity for both HER and MOR, and only a low potential of 97 mV at 10 mA cm–2 was required for HER and 1.48 V at 30 mA cm–2 for MOR. In a two-electrode electrocatalytic cell measurement, a cell voltage of 1.63 V was observed at 10 mA cm–2 in the presence of methanol, 240 mV lower than that without methanol.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c10405</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-10, Vol.16 (39), p.52326-52338</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3188-8877 ; 0000-0003-1066-3003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hou, Kexian</creatorcontrib><creatorcontrib>Zhang, Shizhen</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Cao, Yanfeng</creatorcontrib><creatorcontrib>Wang, Mingxi</creatorcontrib><creatorcontrib>Zhan, Weiting</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><title>Zinc Vaporization Induced Formation of Desired Ni Nanoparticles Coated with Ultrathin Carbon Shells for Efficient Electrocatalytic H2 Production Coupling with Methanol Upgrading</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The integration of the hydrogen evolution reaction (HER) with the methanol oxidation reaction (MOR) has been demonstrated to be a viable strategy for the energy-saving generation of H2 and value-added formate, which relies primarily on highly active and cost-effective bifunctional electrocatalysts. Herein, an efficient electrocatalyst consisting of controllable Ni nanoparticles (NPs) coated with ultrathin graphitic carbon shells was obtained by the pyrolysis of a Ni–Zn metal–organic framework. Intriguingly, we found that zinc vaporization not only resulted in the relatively small Ni NPs but also ultrathin carbon shells (≤3 layers). The density functional theory simulations confirmed that these ultrathin carbon shells significantly influenced electrocatalytic activity by facilitating electron transfer from the Ni core to the carbon shell. The optimized Ni1(Zn)@C demonstrated high catalytic activity for both HER and MOR, and only a low potential of 97 mV at 10 mA cm–2 was required for HER and 1.48 V at 30 mA cm–2 for MOR. In a two-electrode electrocatalytic cell measurement, a cell voltage of 1.63 V was observed at 10 mA cm–2 in the presence of methanol, 240 mV lower than that without methanol.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kU1r3DAQhk1poWnaa886lsBu9Om1j8HZTRbyBen20IsZ6yOroJUcSSak_6r_MGodcprhYeZ9Z3ir6jvBS4IpOQWZ4GCXXBLMsfhQHZGW80VDBf343nP-ufqS0iPGNaNYHFV_f1sv0S8YQ7R_INvg0darSWqFNiEeZhIMOtfJxgJvLLoBH0aI2UqnE-oC5MKfbd6jncsR8t561EEcyuL9XjuXkAkRrY2x0mqf0dppmWOQkMG9FBV0SdFdDMX0v1kXptFZ_zBLXuu8L34O7caHCKrwr9UnAy7pb2_1uNpt1j-7y8XV7cW2O7taABEsLwY8MF2rgXFBKWubpuFDgwdsoFkpKVqgK8wbJbhRVNS1VmTFcNtCLYzhClN2XP2YdccYniadcn-wSZZ_wOswpZ4R3KxqylldRk_m0RJB_xim6MthPcH9v1z6OZf-LRf2Cgd3hR8</recordid><startdate>20241002</startdate><enddate>20241002</enddate><creator>Hou, Kexian</creator><creator>Zhang, Shizhen</creator><creator>Yin, Peng</creator><creator>Liu, Tao</creator><creator>Cao, Yanfeng</creator><creator>Wang, Mingxi</creator><creator>Zhan, Weiting</creator><creator>Wu, Ling</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3188-8877</orcidid><orcidid>https://orcid.org/0000-0003-1066-3003</orcidid></search><sort><creationdate>20241002</creationdate><title>Zinc Vaporization Induced Formation of Desired Ni Nanoparticles Coated with Ultrathin Carbon Shells for Efficient Electrocatalytic H2 Production Coupling with Methanol Upgrading</title><author>Hou, Kexian ; Zhang, Shizhen ; Yin, Peng ; Liu, Tao ; Cao, Yanfeng ; Wang, Mingxi ; Zhan, Weiting ; Wu, Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-b0b3e6db34522398884b80b0fa87dc59a27048d54fd2566ed173099a65ff4d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Kexian</creatorcontrib><creatorcontrib>Zhang, Shizhen</creatorcontrib><creatorcontrib>Yin, Peng</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Cao, Yanfeng</creatorcontrib><creatorcontrib>Wang, Mingxi</creatorcontrib><creatorcontrib>Zhan, Weiting</creatorcontrib><creatorcontrib>Wu, Ling</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Kexian</au><au>Zhang, Shizhen</au><au>Yin, Peng</au><au>Liu, Tao</au><au>Cao, Yanfeng</au><au>Wang, Mingxi</au><au>Zhan, Weiting</au><au>Wu, Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc Vaporization Induced Formation of Desired Ni Nanoparticles Coated with Ultrathin Carbon Shells for Efficient Electrocatalytic H2 Production Coupling with Methanol Upgrading</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-10-02</date><risdate>2024</risdate><volume>16</volume><issue>39</issue><spage>52326</spage><epage>52338</epage><pages>52326-52338</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>The integration of the hydrogen evolution reaction (HER) with the methanol oxidation reaction (MOR) has been demonstrated to be a viable strategy for the energy-saving generation of H2 and value-added formate, which relies primarily on highly active and cost-effective bifunctional electrocatalysts. Herein, an efficient electrocatalyst consisting of controllable Ni nanoparticles (NPs) coated with ultrathin graphitic carbon shells was obtained by the pyrolysis of a Ni–Zn metal–organic framework. Intriguingly, we found that zinc vaporization not only resulted in the relatively small Ni NPs but also ultrathin carbon shells (≤3 layers). The density functional theory simulations confirmed that these ultrathin carbon shells significantly influenced electrocatalytic activity by facilitating electron transfer from the Ni core to the carbon shell. The optimized Ni1(Zn)@C demonstrated high catalytic activity for both HER and MOR, and only a low potential of 97 mV at 10 mA cm–2 was required for HER and 1.48 V at 30 mA cm–2 for MOR. In a two-electrode electrocatalytic cell measurement, a cell voltage of 1.63 V was observed at 10 mA cm–2 in the presence of methanol, 240 mV lower than that without methanol.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c10405</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3188-8877</orcidid><orcidid>https://orcid.org/0000-0003-1066-3003</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-10, Vol.16 (39), p.52326-52338
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3108762436
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Zinc Vaporization Induced Formation of Desired Ni Nanoparticles Coated with Ultrathin Carbon Shells for Efficient Electrocatalytic H2 Production Coupling with Methanol Upgrading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A47%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20Vaporization%20Induced%20Formation%20of%20Desired%20Ni%20Nanoparticles%20Coated%20with%20Ultrathin%20Carbon%20Shells%20for%20Efficient%20Electrocatalytic%20H2%20Production%20Coupling%20with%20Methanol%20Upgrading&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Hou,%20Kexian&rft.date=2024-10-02&rft.volume=16&rft.issue=39&rft.spage=52326&rft.epage=52338&rft.pages=52326-52338&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c10405&rft_dat=%3Cproquest_acs_j%3E3108762436%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a153t-b0b3e6db34522398884b80b0fa87dc59a27048d54fd2566ed173099a65ff4d023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3108762436&rft_id=info:pmid/&rfr_iscdi=true