Loading…

Twist‐Controlled Ferroelectricity and Emergent Multiferroicity in WSe2 Bilayers

Recently, researchers have been investigating artificial ferroelectricity, which arises when inversion symmetry is broken in certain R‐stacked, i.e., zero‐degree twisted, van der Waals (vdW) bilayers. Here, the study reports the twist‐controlled ferroelectricity in tungsten diselenide (WSe2) bilayer...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-11, Vol.36 (46), p.e2406290-n/a
Main Authors: Hassan, Yasir, Singh, Budhi, Joe, Minwoong, Son, Byoung‐Min, Ngo, Tien Dat, Jang, Younggeun, Sett, Shaili, Singha, Arup, Biswas, Rabindra, Bhakar, Monika, Watanabe, Kenji, Taniguchi, Takashi, Raghunathan, Varun, Sheet, Goutam, Lee, Zonghoon, Yoo, Won Jong, Srivastava, Pawan Kumar, Lee, Changgu
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 46
container_start_page e2406290
container_title Advanced materials (Weinheim)
container_volume 36
creator Hassan, Yasir
Singh, Budhi
Joe, Minwoong
Son, Byoung‐Min
Ngo, Tien Dat
Jang, Younggeun
Sett, Shaili
Singha, Arup
Biswas, Rabindra
Bhakar, Monika
Watanabe, Kenji
Taniguchi, Takashi
Raghunathan, Varun
Sheet, Goutam
Lee, Zonghoon
Yoo, Won Jong
Srivastava, Pawan Kumar
Lee, Changgu
description Recently, researchers have been investigating artificial ferroelectricity, which arises when inversion symmetry is broken in certain R‐stacked, i.e., zero‐degree twisted, van der Waals (vdW) bilayers. Here, the study reports the twist‐controlled ferroelectricity in tungsten diselenide (WSe2) bilayers. The findings show noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. This twist‐controlled ferroelectricity serves as a spectroscopic tool for detecting transitions between commensurate and incommensurate moiré patterns. At 5.5 K, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior. The study offers insights into twist‐controlled coexisting ferro‐ordering and serves as valuable spectroscopic tools. The twisted tungsten diselenide (WSe2) bilayers stacked along with monolayer graphene exhibit noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. Also, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior.
doi_str_mv 10.1002/adma.202406290
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3109422867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109422867</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1960-764a7163e7231875747e654801df96663b8d0dccd953b19156dba417b86816533</originalsourceid><addsrcrecordid>eNpd0M1Kw0AQB_BFFKzVq-eAFy-ps5_ZPdbaqlARseIxbLJb2bJN6m5Cyc1H8Bl9ElMqPXgahvkxM_wRusQwwgDkRpu1HhEgDARRcIQGmBOcMlD8GA1AUZ4qweQpOotxBQBKgBigl8XWxebn63tSV02ovbcmmdkQautt2QRXuqZLdGWS6dqGD1s1yVPrG7fckf3QVcn7qyXJrfO6syGeo5Ol9tFe_NUheptNF5OHdP58_zgZz9MN7k-nmWA6w4LajFAsM56xzArOJGCzVEIIWkgDpiyN4rTACnNhCs1wVkghseCUDtH1fu8m1J-tjU2-drG03uvK1m3MKQbFCJEi6-nVP7qq21D13_WKSMZBAuuV2qut87bLN8GtdehyDPku3nwXb36INx_fPY0PHf0FSVZv9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128450804</pqid></control><display><type>article</type><title>Twist‐Controlled Ferroelectricity and Emergent Multiferroicity in WSe2 Bilayers</title><source>Wiley</source><creator>Hassan, Yasir ; Singh, Budhi ; Joe, Minwoong ; Son, Byoung‐Min ; Ngo, Tien Dat ; Jang, Younggeun ; Sett, Shaili ; Singha, Arup ; Biswas, Rabindra ; Bhakar, Monika ; Watanabe, Kenji ; Taniguchi, Takashi ; Raghunathan, Varun ; Sheet, Goutam ; Lee, Zonghoon ; Yoo, Won Jong ; Srivastava, Pawan Kumar ; Lee, Changgu</creator><creatorcontrib>Hassan, Yasir ; Singh, Budhi ; Joe, Minwoong ; Son, Byoung‐Min ; Ngo, Tien Dat ; Jang, Younggeun ; Sett, Shaili ; Singha, Arup ; Biswas, Rabindra ; Bhakar, Monika ; Watanabe, Kenji ; Taniguchi, Takashi ; Raghunathan, Varun ; Sheet, Goutam ; Lee, Zonghoon ; Yoo, Won Jong ; Srivastava, Pawan Kumar ; Lee, Changgu</creatorcontrib><description><![CDATA[Recently, researchers have been investigating artificial ferroelectricity, which arises when inversion symmetry is broken in certain R‐stacked, i.e., zero‐degree twisted, van der Waals (vdW) bilayers. Here, the study reports the twist‐controlled ferroelectricity in tungsten diselenide (WSe2) bilayers. The findings show noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. This twist‐controlled ferroelectricity serves as a spectroscopic tool for detecting transitions between commensurate and incommensurate moiré patterns. At 5.5 K, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior. The study offers insights into twist‐controlled coexisting ferro‐ordering and serves as valuable spectroscopic tools. The twisted tungsten diselenide (WSe2) bilayers stacked along with monolayer graphene exhibit noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. Also, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior.]]></description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202406290</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ferroelectric materials ; Ferroelectricity ; Ferromagnetism ; Moire patterns ; Moiré superlattices ; multiferroic behavior ; Room temperature ; Selenides ; transition metal dichalogenides ; Tungsten compounds ; twist angle</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (46), p.e2406290-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0825-3921 ; 0000-0002-8915-7746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hassan, Yasir</creatorcontrib><creatorcontrib>Singh, Budhi</creatorcontrib><creatorcontrib>Joe, Minwoong</creatorcontrib><creatorcontrib>Son, Byoung‐Min</creatorcontrib><creatorcontrib>Ngo, Tien Dat</creatorcontrib><creatorcontrib>Jang, Younggeun</creatorcontrib><creatorcontrib>Sett, Shaili</creatorcontrib><creatorcontrib>Singha, Arup</creatorcontrib><creatorcontrib>Biswas, Rabindra</creatorcontrib><creatorcontrib>Bhakar, Monika</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Raghunathan, Varun</creatorcontrib><creatorcontrib>Sheet, Goutam</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Srivastava, Pawan Kumar</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><title>Twist‐Controlled Ferroelectricity and Emergent Multiferroicity in WSe2 Bilayers</title><title>Advanced materials (Weinheim)</title><description><![CDATA[Recently, researchers have been investigating artificial ferroelectricity, which arises when inversion symmetry is broken in certain R‐stacked, i.e., zero‐degree twisted, van der Waals (vdW) bilayers. Here, the study reports the twist‐controlled ferroelectricity in tungsten diselenide (WSe2) bilayers. The findings show noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. This twist‐controlled ferroelectricity serves as a spectroscopic tool for detecting transitions between commensurate and incommensurate moiré patterns. At 5.5 K, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior. The study offers insights into twist‐controlled coexisting ferro‐ordering and serves as valuable spectroscopic tools. The twisted tungsten diselenide (WSe2) bilayers stacked along with monolayer graphene exhibit noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. Also, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior.]]></description><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferromagnetism</subject><subject>Moire patterns</subject><subject>Moiré superlattices</subject><subject>multiferroic behavior</subject><subject>Room temperature</subject><subject>Selenides</subject><subject>transition metal dichalogenides</subject><subject>Tungsten compounds</subject><subject>twist angle</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0M1Kw0AQB_BFFKzVq-eAFy-ps5_ZPdbaqlARseIxbLJb2bJN6m5Cyc1H8Bl9ElMqPXgahvkxM_wRusQwwgDkRpu1HhEgDARRcIQGmBOcMlD8GA1AUZ4qweQpOotxBQBKgBigl8XWxebn63tSV02ovbcmmdkQautt2QRXuqZLdGWS6dqGD1s1yVPrG7fckf3QVcn7qyXJrfO6syGeo5Ol9tFe_NUheptNF5OHdP58_zgZz9MN7k-nmWA6w4LajFAsM56xzArOJGCzVEIIWkgDpiyN4rTACnNhCs1wVkghseCUDtH1fu8m1J-tjU2-drG03uvK1m3MKQbFCJEi6-nVP7qq21D13_WKSMZBAuuV2qut87bLN8GtdehyDPku3nwXb36INx_fPY0PHf0FSVZv9Q</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Hassan, Yasir</creator><creator>Singh, Budhi</creator><creator>Joe, Minwoong</creator><creator>Son, Byoung‐Min</creator><creator>Ngo, Tien Dat</creator><creator>Jang, Younggeun</creator><creator>Sett, Shaili</creator><creator>Singha, Arup</creator><creator>Biswas, Rabindra</creator><creator>Bhakar, Monika</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Raghunathan, Varun</creator><creator>Sheet, Goutam</creator><creator>Lee, Zonghoon</creator><creator>Yoo, Won Jong</creator><creator>Srivastava, Pawan Kumar</creator><creator>Lee, Changgu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0825-3921</orcidid><orcidid>https://orcid.org/0000-0002-8915-7746</orcidid></search><sort><creationdate>20241101</creationdate><title>Twist‐Controlled Ferroelectricity and Emergent Multiferroicity in WSe2 Bilayers</title><author>Hassan, Yasir ; Singh, Budhi ; Joe, Minwoong ; Son, Byoung‐Min ; Ngo, Tien Dat ; Jang, Younggeun ; Sett, Shaili ; Singha, Arup ; Biswas, Rabindra ; Bhakar, Monika ; Watanabe, Kenji ; Taniguchi, Takashi ; Raghunathan, Varun ; Sheet, Goutam ; Lee, Zonghoon ; Yoo, Won Jong ; Srivastava, Pawan Kumar ; Lee, Changgu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1960-764a7163e7231875747e654801df96663b8d0dccd953b19156dba417b86816533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferromagnetism</topic><topic>Moire patterns</topic><topic>Moiré superlattices</topic><topic>multiferroic behavior</topic><topic>Room temperature</topic><topic>Selenides</topic><topic>transition metal dichalogenides</topic><topic>Tungsten compounds</topic><topic>twist angle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Yasir</creatorcontrib><creatorcontrib>Singh, Budhi</creatorcontrib><creatorcontrib>Joe, Minwoong</creatorcontrib><creatorcontrib>Son, Byoung‐Min</creatorcontrib><creatorcontrib>Ngo, Tien Dat</creatorcontrib><creatorcontrib>Jang, Younggeun</creatorcontrib><creatorcontrib>Sett, Shaili</creatorcontrib><creatorcontrib>Singha, Arup</creatorcontrib><creatorcontrib>Biswas, Rabindra</creatorcontrib><creatorcontrib>Bhakar, Monika</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Raghunathan, Varun</creatorcontrib><creatorcontrib>Sheet, Goutam</creatorcontrib><creatorcontrib>Lee, Zonghoon</creatorcontrib><creatorcontrib>Yoo, Won Jong</creatorcontrib><creatorcontrib>Srivastava, Pawan Kumar</creatorcontrib><creatorcontrib>Lee, Changgu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Yasir</au><au>Singh, Budhi</au><au>Joe, Minwoong</au><au>Son, Byoung‐Min</au><au>Ngo, Tien Dat</au><au>Jang, Younggeun</au><au>Sett, Shaili</au><au>Singha, Arup</au><au>Biswas, Rabindra</au><au>Bhakar, Monika</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Raghunathan, Varun</au><au>Sheet, Goutam</au><au>Lee, Zonghoon</au><au>Yoo, Won Jong</au><au>Srivastava, Pawan Kumar</au><au>Lee, Changgu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Twist‐Controlled Ferroelectricity and Emergent Multiferroicity in WSe2 Bilayers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>46</issue><spage>e2406290</spage><epage>n/a</epage><pages>e2406290-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract><![CDATA[Recently, researchers have been investigating artificial ferroelectricity, which arises when inversion symmetry is broken in certain R‐stacked, i.e., zero‐degree twisted, van der Waals (vdW) bilayers. Here, the study reports the twist‐controlled ferroelectricity in tungsten diselenide (WSe2) bilayers. The findings show noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. This twist‐controlled ferroelectricity serves as a spectroscopic tool for detecting transitions between commensurate and incommensurate moiré patterns. At 5.5 K, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior. The study offers insights into twist‐controlled coexisting ferro‐ordering and serves as valuable spectroscopic tools. The twisted tungsten diselenide (WSe2) bilayers stacked along with monolayer graphene exhibit noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale‐controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist‐controlled commensurate to non‐commensurate transitions. Also, 3° twisted WSe2 exhibits ferroelectric and correlation‐driven ferromagnetic ordering, indicating twist‐controlled multiferroic behavior.]]></abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202406290</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0825-3921</orcidid><orcidid>https://orcid.org/0000-0002-8915-7746</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, Vol.36 (46), p.e2406290-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3109422867
source Wiley
subjects Ferroelectric materials
Ferroelectricity
Ferromagnetism
Moire patterns
Moiré superlattices
multiferroic behavior
Room temperature
Selenides
transition metal dichalogenides
Tungsten compounds
twist angle
title Twist‐Controlled Ferroelectricity and Emergent Multiferroicity in WSe2 Bilayers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Twist%E2%80%90Controlled%20Ferroelectricity%20and%20Emergent%20Multiferroicity%20in%20WSe2%20Bilayers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hassan,%20Yasir&rft.date=2024-11-01&rft.volume=36&rft.issue=46&rft.spage=e2406290&rft.epage=n/a&rft.pages=e2406290-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202406290&rft_dat=%3Cproquest_wiley%3E3109422867%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1960-764a7163e7231875747e654801df96663b8d0dccd953b19156dba417b86816533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3128450804&rft_id=info:pmid/&rfr_iscdi=true