Loading…
A novel SNP within the Rsa10025320 gene is highly associated with hollowness in red-skinned radish fleshy roots
Hollowness is a physiological disorder that frequently occurs during the growth and postharvest storage phases of fleshy radish roots, significantly diminishing quality, yield, and marketability. However, the molecular mechanism for hollowness remains elusive. To identify the QTLs and potential cand...
Saved in:
Published in: | Theoretical and applied genetics 2024-10, Vol.137 (10), p.242, Article 242 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hollowness is a physiological disorder that frequently occurs during the growth and postharvest storage phases of fleshy radish roots, significantly diminishing quality, yield, and marketability. However, the molecular mechanism for hollowness remains elusive. To identify the QTLs and potential candidate genes for hollowness tolerance in radish, F
2
and BC
1
populations were constructed from hollowness-tolerant radish (C16) and hollowness-sensitive radish (C17) in the present study. Genetic analysis indicated that hollowness tolerance may be governed by two independent recessive genes. By employing bulked segregant analysis sequencing (BSA-seq), two significant candidate genomic intervals were pinpointed on chromosomes R04 (960 kb, 6.48–7.44 Mb) and R05 (600 kb, 31.44–32.04 Mb), which together harbor 107 annotated genes. Transcriptomic sequencing revealed that the downregulated differentially expressed genes (DEGs) were significantly enriched in biological processes related to cell death and the response to water stress, whereas the upregulated DEGs were significantly associated with the chitin catabolic process and the cell wall macromolecule metabolic process. A total of 46 intersecting genes were identified among these DEGs within the genomic intervals of interest. One gene with high expression (
Rsa10025345
) and two with low expression (
Rsa10025320
and
Rsa10018106
) were detected in the tolerant variety C16. Furthermore, a SNP within
Rsa10025320
resulting in an amino acid change (A188E) was characterized through sequence variation observed in both BSA-seq and RNA-seq data and further developed as a derived cleaved amplified polymorphic sequence (dCAPS) marker. Our study reveals potential target genes for tolerance to hollowness and paves the way for marker-assisted breeding of hollowness tolerance in red-skinned radishes. |
---|---|
ISSN: | 0040-5752 1432-2242 1432-2242 |
DOI: | 10.1007/s00122-024-04747-1 |