Loading…

Multi-physics numerical simulation study on thermo-sensitive gel delivery for a local post-tumor surgery treatment

Numerous studies in the literature have proposed the use of thermo-responsive hydrogels for filling cavities after tumor resection. However, optimizing the injection process is challenging due to the complex interplay of various multi-physics phenomena, such as the coupling of flow and heat transfer...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutical sciences 2024-12, Vol.203, p.106917, Article 106917
Main Authors: González-Garcinuño, Álvaro, Tabernero, Antonio, Blanco-López, Marcos, Martín del Valle, Eva, Kenjeres, Sasa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c281t-e1bdb37e4c4fd49d166cbb9d920cd374370817eca31f0e0e5b2517bb77b743843
container_end_page
container_issue
container_start_page 106917
container_title European journal of pharmaceutical sciences
container_volume 203
creator González-Garcinuño, Álvaro
Tabernero, Antonio
Blanco-López, Marcos
Martín del Valle, Eva
Kenjeres, Sasa
description Numerous studies in the literature have proposed the use of thermo-responsive hydrogels for filling cavities after tumor resection. However, optimizing the injection process is challenging due to the complex interplay of various multi-physics phenomena, such as the coupling of flow and heat transfer, multi-phase interactions, and phase-change dynamics. Therefore, gaining a fundamental understanding of these processes is crucial. In this study, we introduce a thermo-sensitive hydrogel formulated with poloxamer 407 and Gellan gum as a promising filling agent, offering an ideal phase-transition temperature along with suitable elastic and viscous modulus properties. We performed multi-physics simulations to predict the flow and temperature distributions during hydrogel injection. The results suggested that the hydrogel should be kept at 4 °C and injected within 90 s to avoid reaching the transition temperature. Cavity filling simulations indicated a symmetric distribution of the hydrogel, with minimal influence from the syringe's position. The temperature gradient at the cavity edge delays gelation during injection, which is essential to guarantee its administration as a liquid. The hydrogel's viscosity follows a sigmoidal function relative to temperature, taking five minutes to reach its maximum value. In summary, the multi-physics simulations carried out in this study confirm the potential of thermo-responsive hydrogels for use in post-tumor surgery treatment and define the conditions for a proper administration. Furthermore, the proposed model can be widely applied to other thermo-responsive hydrogels or under different conditions. [Display omitted]
doi_str_mv 10.1016/j.ejps.2024.106917
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3111636423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928098724002306</els_id><sourcerecordid>3111636423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e1bdb37e4c4fd49d166cbb9d920cd374370817eca31f0e0e5b2517bb77b743843</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERbeFP8AB-cgliz_SOJG4oKotlYp6gbMV25PWKycOHrvS_nscbeHIaUbzfkjzEPKRsz1nvPty2MNhxb1goq2HbuDqDdnxXg0NU4K9JTs2iL5hQ6_OyQXigTHW9Yq9I-dykG3V5I6kHyVk36zPR_QW6VJmSN6OgaKfSxizjwvFXNyR1iU_Q5pjg7Cgz_4F6BME6iDUNR3pFBMdaYhbeo2Ym1zmesKSnjY5JxjzDEt-T86mMSB8eJ2X5Nftzc_r783D49399beHxoqe5wa4cUYqaG07uXZwvOusMYMbBLNOqlYq1nMFdpR8YsDgyogrroxRylSxb-Ul-XzqXVP8XQCznj1aCGFcIBbUknPeya4VslrFyWpTREww6TX5eUxHzZneWOuD3ljrjbU-sa6hT6_9xczg_kX-wq2GrycD1C9fPCSN1sNiwfkENmsX_f_6_wBsNJLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111636423</pqid></control><display><type>article</type><title>Multi-physics numerical simulation study on thermo-sensitive gel delivery for a local post-tumor surgery treatment</title><source>Elsevier</source><creator>González-Garcinuño, Álvaro ; Tabernero, Antonio ; Blanco-López, Marcos ; Martín del Valle, Eva ; Kenjeres, Sasa</creator><creatorcontrib>González-Garcinuño, Álvaro ; Tabernero, Antonio ; Blanco-López, Marcos ; Martín del Valle, Eva ; Kenjeres, Sasa</creatorcontrib><description>Numerous studies in the literature have proposed the use of thermo-responsive hydrogels for filling cavities after tumor resection. However, optimizing the injection process is challenging due to the complex interplay of various multi-physics phenomena, such as the coupling of flow and heat transfer, multi-phase interactions, and phase-change dynamics. Therefore, gaining a fundamental understanding of these processes is crucial. In this study, we introduce a thermo-sensitive hydrogel formulated with poloxamer 407 and Gellan gum as a promising filling agent, offering an ideal phase-transition temperature along with suitable elastic and viscous modulus properties. We performed multi-physics simulations to predict the flow and temperature distributions during hydrogel injection. The results suggested that the hydrogel should be kept at 4 °C and injected within 90 s to avoid reaching the transition temperature. Cavity filling simulations indicated a symmetric distribution of the hydrogel, with minimal influence from the syringe's position. The temperature gradient at the cavity edge delays gelation during injection, which is essential to guarantee its administration as a liquid. The hydrogel's viscosity follows a sigmoidal function relative to temperature, taking five minutes to reach its maximum value. In summary, the multi-physics simulations carried out in this study confirm the potential of thermo-responsive hydrogels for use in post-tumor surgery treatment and define the conditions for a proper administration. Furthermore, the proposed model can be widely applied to other thermo-responsive hydrogels or under different conditions. [Display omitted]</description><identifier>ISSN: 0928-0987</identifier><identifier>ISSN: 1879-0720</identifier><identifier>EISSN: 1879-0720</identifier><identifier>DOI: 10.1016/j.ejps.2024.106917</identifier><identifier>PMID: 39349283</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Gelation ; Injection ; Level set method ; Multi-physics simulations ; Thermo-responsive hydrogel</subject><ispartof>European journal of pharmaceutical sciences, 2024-12, Vol.203, p.106917, Article 106917</ispartof><rights>2024 The Author(s)</rights><rights>Copyright © 2024. Published by Elsevier B.V.</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-e1bdb37e4c4fd49d166cbb9d920cd374370817eca31f0e0e5b2517bb77b743843</cites><orcidid>0000-0003-0013-9953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39349283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Garcinuño, Álvaro</creatorcontrib><creatorcontrib>Tabernero, Antonio</creatorcontrib><creatorcontrib>Blanco-López, Marcos</creatorcontrib><creatorcontrib>Martín del Valle, Eva</creatorcontrib><creatorcontrib>Kenjeres, Sasa</creatorcontrib><title>Multi-physics numerical simulation study on thermo-sensitive gel delivery for a local post-tumor surgery treatment</title><title>European journal of pharmaceutical sciences</title><addtitle>Eur J Pharm Sci</addtitle><description>Numerous studies in the literature have proposed the use of thermo-responsive hydrogels for filling cavities after tumor resection. However, optimizing the injection process is challenging due to the complex interplay of various multi-physics phenomena, such as the coupling of flow and heat transfer, multi-phase interactions, and phase-change dynamics. Therefore, gaining a fundamental understanding of these processes is crucial. In this study, we introduce a thermo-sensitive hydrogel formulated with poloxamer 407 and Gellan gum as a promising filling agent, offering an ideal phase-transition temperature along with suitable elastic and viscous modulus properties. We performed multi-physics simulations to predict the flow and temperature distributions during hydrogel injection. The results suggested that the hydrogel should be kept at 4 °C and injected within 90 s to avoid reaching the transition temperature. Cavity filling simulations indicated a symmetric distribution of the hydrogel, with minimal influence from the syringe's position. The temperature gradient at the cavity edge delays gelation during injection, which is essential to guarantee its administration as a liquid. The hydrogel's viscosity follows a sigmoidal function relative to temperature, taking five minutes to reach its maximum value. In summary, the multi-physics simulations carried out in this study confirm the potential of thermo-responsive hydrogels for use in post-tumor surgery treatment and define the conditions for a proper administration. Furthermore, the proposed model can be widely applied to other thermo-responsive hydrogels or under different conditions. [Display omitted]</description><subject>Gelation</subject><subject>Injection</subject><subject>Level set method</subject><subject>Multi-physics simulations</subject><subject>Thermo-responsive hydrogel</subject><issn>0928-0987</issn><issn>1879-0720</issn><issn>1879-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1v1DAQhi1ERbeFP8AB-cgliz_SOJG4oKotlYp6gbMV25PWKycOHrvS_nscbeHIaUbzfkjzEPKRsz1nvPty2MNhxb1goq2HbuDqDdnxXg0NU4K9JTs2iL5hQ6_OyQXigTHW9Yq9I-dykG3V5I6kHyVk36zPR_QW6VJmSN6OgaKfSxizjwvFXNyR1iU_Q5pjg7Cgz_4F6BME6iDUNR3pFBMdaYhbeo2Ym1zmesKSnjY5JxjzDEt-T86mMSB8eJ2X5Nftzc_r783D49399beHxoqe5wa4cUYqaG07uXZwvOusMYMbBLNOqlYq1nMFdpR8YsDgyogrroxRylSxb-Ul-XzqXVP8XQCznj1aCGFcIBbUknPeya4VslrFyWpTREww6TX5eUxHzZneWOuD3ljrjbU-sa6hT6_9xczg_kX-wq2GrycD1C9fPCSN1sNiwfkENmsX_f_6_wBsNJLc</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>González-Garcinuño, Álvaro</creator><creator>Tabernero, Antonio</creator><creator>Blanco-López, Marcos</creator><creator>Martín del Valle, Eva</creator><creator>Kenjeres, Sasa</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0013-9953</orcidid></search><sort><creationdate>20241201</creationdate><title>Multi-physics numerical simulation study on thermo-sensitive gel delivery for a local post-tumor surgery treatment</title><author>González-Garcinuño, Álvaro ; Tabernero, Antonio ; Blanco-López, Marcos ; Martín del Valle, Eva ; Kenjeres, Sasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e1bdb37e4c4fd49d166cbb9d920cd374370817eca31f0e0e5b2517bb77b743843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Gelation</topic><topic>Injection</topic><topic>Level set method</topic><topic>Multi-physics simulations</topic><topic>Thermo-responsive hydrogel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Garcinuño, Álvaro</creatorcontrib><creatorcontrib>Tabernero, Antonio</creatorcontrib><creatorcontrib>Blanco-López, Marcos</creatorcontrib><creatorcontrib>Martín del Valle, Eva</creatorcontrib><creatorcontrib>Kenjeres, Sasa</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Garcinuño, Álvaro</au><au>Tabernero, Antonio</au><au>Blanco-López, Marcos</au><au>Martín del Valle, Eva</au><au>Kenjeres, Sasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-physics numerical simulation study on thermo-sensitive gel delivery for a local post-tumor surgery treatment</atitle><jtitle>European journal of pharmaceutical sciences</jtitle><addtitle>Eur J Pharm Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>203</volume><spage>106917</spage><pages>106917-</pages><artnum>106917</artnum><issn>0928-0987</issn><issn>1879-0720</issn><eissn>1879-0720</eissn><abstract>Numerous studies in the literature have proposed the use of thermo-responsive hydrogels for filling cavities after tumor resection. However, optimizing the injection process is challenging due to the complex interplay of various multi-physics phenomena, such as the coupling of flow and heat transfer, multi-phase interactions, and phase-change dynamics. Therefore, gaining a fundamental understanding of these processes is crucial. In this study, we introduce a thermo-sensitive hydrogel formulated with poloxamer 407 and Gellan gum as a promising filling agent, offering an ideal phase-transition temperature along with suitable elastic and viscous modulus properties. We performed multi-physics simulations to predict the flow and temperature distributions during hydrogel injection. The results suggested that the hydrogel should be kept at 4 °C and injected within 90 s to avoid reaching the transition temperature. Cavity filling simulations indicated a symmetric distribution of the hydrogel, with minimal influence from the syringe's position. The temperature gradient at the cavity edge delays gelation during injection, which is essential to guarantee its administration as a liquid. The hydrogel's viscosity follows a sigmoidal function relative to temperature, taking five minutes to reach its maximum value. In summary, the multi-physics simulations carried out in this study confirm the potential of thermo-responsive hydrogels for use in post-tumor surgery treatment and define the conditions for a proper administration. Furthermore, the proposed model can be widely applied to other thermo-responsive hydrogels or under different conditions. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39349283</pmid><doi>10.1016/j.ejps.2024.106917</doi><orcidid>https://orcid.org/0000-0003-0013-9953</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-0987
ispartof European journal of pharmaceutical sciences, 2024-12, Vol.203, p.106917, Article 106917
issn 0928-0987
1879-0720
1879-0720
language eng
recordid cdi_proquest_miscellaneous_3111636423
source Elsevier
subjects Gelation
Injection
Level set method
Multi-physics simulations
Thermo-responsive hydrogel
title Multi-physics numerical simulation study on thermo-sensitive gel delivery for a local post-tumor surgery treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-physics%20numerical%20simulation%20study%20on%20thermo-sensitive%20gel%20delivery%20for%20a%20local%20post-tumor%20surgery%20treatment&rft.jtitle=European%20journal%20of%20pharmaceutical%20sciences&rft.au=Gonz%C3%A1lez-Garcinu%C3%B1o,%20%C3%81lvaro&rft.date=2024-12-01&rft.volume=203&rft.spage=106917&rft.pages=106917-&rft.artnum=106917&rft.issn=0928-0987&rft.eissn=1879-0720&rft_id=info:doi/10.1016/j.ejps.2024.106917&rft_dat=%3Cproquest_cross%3E3111636423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-e1bdb37e4c4fd49d166cbb9d920cd374370817eca31f0e0e5b2517bb77b743843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3111636423&rft_id=info:pmid/39349283&rfr_iscdi=true