Loading…
Crystallization of lysozyme: From vapor diffusion experiments to batch crystallization in agitated ml-scale vessels
The crystallization of lysozyme was monitored in 20-μl sitting-drop vapor diffusion experiments and a quantitative phase diagram was obtained. Then, batch crystallization of lysozyme in shaked 200-μl microtiter plates was investigated. It was observed that with rising agitation rates, the area of th...
Saved in:
Published in: | Process biochemistry (1991) 2007-12, Vol.42 (12), p.1649-1654 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The crystallization of lysozyme was monitored in 20-μl sitting-drop vapor diffusion experiments and a quantitative phase diagram was obtained. Then, batch crystallization of lysozyme in shaked 200-μl microtiter plates was investigated. It was observed that with rising agitation rates, the area of the nucleation zone was significantly reduced. Further batch crystallization experiments were performed (i) in 0.2–2-ml Eppendorf tubes in a laboratory rotator, (ii) in 5-ml unbaffled shake flasks, and (iii) in 4-ml stirred baffled and unbaffled vessels. The crystal area density distributions of the stirred vessels were clearly more narrow compared to the rotated Eppendorf tubes. The crystal area density distributions of the shake flasks were significantly wider. The use of the biocompatible, water-soluble ionic liquid ethanolammonium formate as a crystallization additive in unbaffled stirred vessels resulted in larger, sturdy crystals and reduced formation of crystal aggregates. The experiments indicate that ml-scale batch crystallization of lysozyme in stirred vessels can be performed fast, up-scaleable, reasonably reproducible, and precipitation can be avoided reliably. |
---|---|
ISSN: | 1359-5113 1873-3298 |
DOI: | 10.1016/j.procbio.2007.10.001 |