Loading…
Red-emissive carbon dot as fluorescent probe for the sensitive detection of sunset yellow in foodstuffs
The highly efficient red-emissive carbon dots (R-CDs) were synthesized from citric acid, polyethyleneimine, and benzil via a facile solvothermal process. The R-CDs displayed maximum fluorescence properties at excitation and emission wavelengths of 550 and 631 nm, respectively, which fall within the...
Saved in:
Published in: | Food chemistry 2025-01, Vol.463 (Pt 4), p.141477, Article 141477 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The highly efficient red-emissive carbon dots (R-CDs) were synthesized from citric acid, polyethyleneimine, and benzil via a facile solvothermal process. The R-CDs displayed maximum fluorescence properties at excitation and emission wavelengths of 550 and 631 nm, respectively, which fall within the red wavelength range. Moreover, the R-CDs exhibited a high fluorescence quantum yield of 11.3 %, and this fluorescence was effectively quenched by Sunset Yellow (SY). Consequently, a novel fluorescent probe was developed for SY detection. This probe exhibited a linear range of 0.085–11.31 μg/mL and limit of detection of 0.026 μg/mL. The R-CDs were validated for SY quantification in various food samples, including carbonate beverages, powdered beverage, cider vinegar, fruit flavored drinks, chocolate, and hard candy samples, achieving recovery rates of 91.2–122 % and a relative standard deviation of 1.0–3.5 %. The synthesized R-CDs therefore show promise for application as a probe for the detection of SY in foods.
•A novel red-emissive carbon dots (R-CDs) were synthesized through a facile method.•The developed method based on R-CDs was successfully validated for sunset yellow quantification in complex samples.•The R-CDs probe is highly selective and sensitive for sunset yellow, showcasing their potential in food safety analysis. |
---|---|
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.141477 |