Loading…
Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital
Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these system...
Saved in:
Published in: | International journal of medical informatics (Shannon, Ireland) Ireland), 2024-12, Vol.192, p.105636, Article 105636 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3 |
container_end_page | |
container_issue | |
container_start_page | 105636 |
container_title | International journal of medical informatics (Shannon, Ireland) |
container_volume | 192 |
creator | Förstel, Stefan Förstel, Markus Gallistl, Markus Zanca, Dario Eskofier, Bjoern M. Rothgang, Eva M. |
description | Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance.
Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries.
Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data.
Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system.
Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes. |
doi_str_mv | 10.1016/j.ijmedinf.2024.105636 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112527220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1386505624002995</els_id><sourcerecordid>3112527220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3</originalsourceid><addsrcrecordid>eNqFUUtP3DAQthAIKPAXkI-9ZOtXnKSnVhRopZV6gbPlJGPwKrEX24uUXvvHO6uF9tiTR_5emvkIueZsxRnXnzYrv5lh9MGtBBMKP2st9RE5520jqlYoeYyzbHVVI3JGPuS8YYw3rFan5Ex2sm4Eb87J72-2WPqys5MvC_WBPse89cVOOLuYZlt8DDQvucCcP9M15BxDphPYFGCkLsWZ2mCn5ZcPT1QyuiCSaXR0i1IIhY77ADS2NMETmqH1PaDxv6hLcuLslOHq7b0gj3e3Dzffq_XP-x83X9fVIFRdqg54D-0gpGtBSes0r7nindQcajU6pzhrGmH7vpX90Ha67Z21vRxdB2q0upcX5OPBd5viyw5yMbPPA0yTDRB32UjORS0aIRhS9YE6pJhzAme2yc82LYYzsy_AbMx7AWZfgDkUgMLrt4xdj_Bf2fvFkfDlQADc9NVDMnnAOw1olWAoZoz-fxl_AAnwnNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112527220</pqid></control><display><type>article</type><title>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</title><source>ScienceDirect Freedom Collection</source><creator>Förstel, Stefan ; Förstel, Markus ; Gallistl, Markus ; Zanca, Dario ; Eskofier, Bjoern M. ; Rothgang, Eva M.</creator><creatorcontrib>Förstel, Stefan ; Förstel, Markus ; Gallistl, Markus ; Zanca, Dario ; Eskofier, Bjoern M. ; Rothgang, Eva M.</creatorcontrib><description>Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance.
Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries.
Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data.
Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system.
Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes.</description><identifier>ISSN: 1386-5056</identifier><identifier>ISSN: 1872-8243</identifier><identifier>EISSN: 1872-8243</identifier><identifier>DOI: 10.1016/j.ijmedinf.2024.105636</identifier><identifier>PMID: 39357217</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Data cleansing ; Data quality ; Digital transformation in healthcare ; Healthcare informatics ; Hospital information systems</subject><ispartof>International journal of medical informatics (Shannon, Ireland), 2024-12, Vol.192, p.105636, Article 105636</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3</cites><orcidid>0000-0002-0417-0336 ; 0000-0003-1517-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39357217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Förstel, Stefan</creatorcontrib><creatorcontrib>Förstel, Markus</creatorcontrib><creatorcontrib>Gallistl, Markus</creatorcontrib><creatorcontrib>Zanca, Dario</creatorcontrib><creatorcontrib>Eskofier, Bjoern M.</creatorcontrib><creatorcontrib>Rothgang, Eva M.</creatorcontrib><title>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</title><title>International journal of medical informatics (Shannon, Ireland)</title><addtitle>Int J Med Inform</addtitle><description>Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance.
Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries.
Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data.
Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system.
Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes.</description><subject>Data cleansing</subject><subject>Data quality</subject><subject>Digital transformation in healthcare</subject><subject>Healthcare informatics</subject><subject>Hospital information systems</subject><issn>1386-5056</issn><issn>1872-8243</issn><issn>1872-8243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUUtP3DAQthAIKPAXkI-9ZOtXnKSnVhRopZV6gbPlJGPwKrEX24uUXvvHO6uF9tiTR_5emvkIueZsxRnXnzYrv5lh9MGtBBMKP2st9RE5520jqlYoeYyzbHVVI3JGPuS8YYw3rFan5Ex2sm4Eb87J72-2WPqys5MvC_WBPse89cVOOLuYZlt8DDQvucCcP9M15BxDphPYFGCkLsWZ2mCn5ZcPT1QyuiCSaXR0i1IIhY77ADS2NMETmqH1PaDxv6hLcuLslOHq7b0gj3e3Dzffq_XP-x83X9fVIFRdqg54D-0gpGtBSes0r7nindQcajU6pzhrGmH7vpX90Ha67Z21vRxdB2q0upcX5OPBd5viyw5yMbPPA0yTDRB32UjORS0aIRhS9YE6pJhzAme2yc82LYYzsy_AbMx7AWZfgDkUgMLrt4xdj_Bf2fvFkfDlQADc9NVDMnnAOw1olWAoZoz-fxl_AAnwnNA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Förstel, Stefan</creator><creator>Förstel, Markus</creator><creator>Gallistl, Markus</creator><creator>Zanca, Dario</creator><creator>Eskofier, Bjoern M.</creator><creator>Rothgang, Eva M.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-1517-9982</orcidid></search><sort><creationdate>20241201</creationdate><title>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</title><author>Förstel, Stefan ; Förstel, Markus ; Gallistl, Markus ; Zanca, Dario ; Eskofier, Bjoern M. ; Rothgang, Eva M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data cleansing</topic><topic>Data quality</topic><topic>Digital transformation in healthcare</topic><topic>Healthcare informatics</topic><topic>Hospital information systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Förstel, Stefan</creatorcontrib><creatorcontrib>Förstel, Markus</creatorcontrib><creatorcontrib>Gallistl, Markus</creatorcontrib><creatorcontrib>Zanca, Dario</creatorcontrib><creatorcontrib>Eskofier, Bjoern M.</creatorcontrib><creatorcontrib>Rothgang, Eva M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Förstel, Stefan</au><au>Förstel, Markus</au><au>Gallistl, Markus</au><au>Zanca, Dario</au><au>Eskofier, Bjoern M.</au><au>Rothgang, Eva M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</atitle><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle><addtitle>Int J Med Inform</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>192</volume><spage>105636</spage><pages>105636-</pages><artnum>105636</artnum><issn>1386-5056</issn><issn>1872-8243</issn><eissn>1872-8243</eissn><abstract>Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance.
Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries.
Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data.
Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system.
Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39357217</pmid><doi>10.1016/j.ijmedinf.2024.105636</doi><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-1517-9982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-5056 |
ispartof | International journal of medical informatics (Shannon, Ireland), 2024-12, Vol.192, p.105636, Article 105636 |
issn | 1386-5056 1872-8243 1872-8243 |
language | eng |
recordid | cdi_proquest_miscellaneous_3112527220 |
source | ScienceDirect Freedom Collection |
subjects | Data cleansing Data quality Digital transformation in healthcare Healthcare informatics Hospital information systems |
title | Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20quality%20in%20hospital%20information%20systems:%20Lessons%20learned%20from%20analyzing%2030%20years%20of%20patient%20data%20in%20a%20regional%20German%20hospital&rft.jtitle=International%20journal%20of%20medical%20informatics%20(Shannon,%20Ireland)&rft.au=F%C3%B6rstel,%20Stefan&rft.date=2024-12-01&rft.volume=192&rft.spage=105636&rft.pages=105636-&rft.artnum=105636&rft.issn=1386-5056&rft.eissn=1872-8243&rft_id=info:doi/10.1016/j.ijmedinf.2024.105636&rft_dat=%3Cproquest_cross%3E3112527220%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112527220&rft_id=info:pmid/39357217&rfr_iscdi=true |