Loading…

Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital

Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these system...

Full description

Saved in:
Bibliographic Details
Published in:International journal of medical informatics (Shannon, Ireland) Ireland), 2024-12, Vol.192, p.105636, Article 105636
Main Authors: Förstel, Stefan, Förstel, Markus, Gallistl, Markus, Zanca, Dario, Eskofier, Bjoern M., Rothgang, Eva M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3
container_end_page
container_issue
container_start_page 105636
container_title International journal of medical informatics (Shannon, Ireland)
container_volume 192
creator Förstel, Stefan
Förstel, Markus
Gallistl, Markus
Zanca, Dario
Eskofier, Bjoern M.
Rothgang, Eva M.
description Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance. Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries. Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data. Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system. Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes.
doi_str_mv 10.1016/j.ijmedinf.2024.105636
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3112527220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1386505624002995</els_id><sourcerecordid>3112527220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3</originalsourceid><addsrcrecordid>eNqFUUtP3DAQthAIKPAXkI-9ZOtXnKSnVhRopZV6gbPlJGPwKrEX24uUXvvHO6uF9tiTR_5emvkIueZsxRnXnzYrv5lh9MGtBBMKP2st9RE5520jqlYoeYyzbHVVI3JGPuS8YYw3rFan5Ex2sm4Eb87J72-2WPqys5MvC_WBPse89cVOOLuYZlt8DDQvucCcP9M15BxDphPYFGCkLsWZ2mCn5ZcPT1QyuiCSaXR0i1IIhY77ADS2NMETmqH1PaDxv6hLcuLslOHq7b0gj3e3Dzffq_XP-x83X9fVIFRdqg54D-0gpGtBSes0r7nindQcajU6pzhrGmH7vpX90Ha67Z21vRxdB2q0upcX5OPBd5viyw5yMbPPA0yTDRB32UjORS0aIRhS9YE6pJhzAme2yc82LYYzsy_AbMx7AWZfgDkUgMLrt4xdj_Bf2fvFkfDlQADc9NVDMnnAOw1olWAoZoz-fxl_AAnwnNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112527220</pqid></control><display><type>article</type><title>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</title><source>ScienceDirect Freedom Collection</source><creator>Förstel, Stefan ; Förstel, Markus ; Gallistl, Markus ; Zanca, Dario ; Eskofier, Bjoern M. ; Rothgang, Eva M.</creator><creatorcontrib>Förstel, Stefan ; Förstel, Markus ; Gallistl, Markus ; Zanca, Dario ; Eskofier, Bjoern M. ; Rothgang, Eva M.</creatorcontrib><description>Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance. Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries. Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data. Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system. Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes.</description><identifier>ISSN: 1386-5056</identifier><identifier>ISSN: 1872-8243</identifier><identifier>EISSN: 1872-8243</identifier><identifier>DOI: 10.1016/j.ijmedinf.2024.105636</identifier><identifier>PMID: 39357217</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Data cleansing ; Data quality ; Digital transformation in healthcare ; Healthcare informatics ; Hospital information systems</subject><ispartof>International journal of medical informatics (Shannon, Ireland), 2024-12, Vol.192, p.105636, Article 105636</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3</cites><orcidid>0000-0002-0417-0336 ; 0000-0003-1517-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39357217$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Förstel, Stefan</creatorcontrib><creatorcontrib>Förstel, Markus</creatorcontrib><creatorcontrib>Gallistl, Markus</creatorcontrib><creatorcontrib>Zanca, Dario</creatorcontrib><creatorcontrib>Eskofier, Bjoern M.</creatorcontrib><creatorcontrib>Rothgang, Eva M.</creatorcontrib><title>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</title><title>International journal of medical informatics (Shannon, Ireland)</title><addtitle>Int J Med Inform</addtitle><description>Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance. Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries. Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data. Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system. Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes.</description><subject>Data cleansing</subject><subject>Data quality</subject><subject>Digital transformation in healthcare</subject><subject>Healthcare informatics</subject><subject>Hospital information systems</subject><issn>1386-5056</issn><issn>1872-8243</issn><issn>1872-8243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUUtP3DAQthAIKPAXkI-9ZOtXnKSnVhRopZV6gbPlJGPwKrEX24uUXvvHO6uF9tiTR_5emvkIueZsxRnXnzYrv5lh9MGtBBMKP2st9RE5520jqlYoeYyzbHVVI3JGPuS8YYw3rFan5Ex2sm4Eb87J72-2WPqys5MvC_WBPse89cVOOLuYZlt8DDQvucCcP9M15BxDphPYFGCkLsWZ2mCn5ZcPT1QyuiCSaXR0i1IIhY77ADS2NMETmqH1PaDxv6hLcuLslOHq7b0gj3e3Dzffq_XP-x83X9fVIFRdqg54D-0gpGtBSes0r7nindQcajU6pzhrGmH7vpX90Ha67Z21vRxdB2q0upcX5OPBd5viyw5yMbPPA0yTDRB32UjORS0aIRhS9YE6pJhzAme2yc82LYYzsy_AbMx7AWZfgDkUgMLrt4xdj_Bf2fvFkfDlQADc9NVDMnnAOw1olWAoZoz-fxl_AAnwnNA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Förstel, Stefan</creator><creator>Förstel, Markus</creator><creator>Gallistl, Markus</creator><creator>Zanca, Dario</creator><creator>Eskofier, Bjoern M.</creator><creator>Rothgang, Eva M.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-1517-9982</orcidid></search><sort><creationdate>20241201</creationdate><title>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</title><author>Förstel, Stefan ; Förstel, Markus ; Gallistl, Markus ; Zanca, Dario ; Eskofier, Bjoern M. ; Rothgang, Eva M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data cleansing</topic><topic>Data quality</topic><topic>Digital transformation in healthcare</topic><topic>Healthcare informatics</topic><topic>Hospital information systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Förstel, Stefan</creatorcontrib><creatorcontrib>Förstel, Markus</creatorcontrib><creatorcontrib>Gallistl, Markus</creatorcontrib><creatorcontrib>Zanca, Dario</creatorcontrib><creatorcontrib>Eskofier, Bjoern M.</creatorcontrib><creatorcontrib>Rothgang, Eva M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Förstel, Stefan</au><au>Förstel, Markus</au><au>Gallistl, Markus</au><au>Zanca, Dario</au><au>Eskofier, Bjoern M.</au><au>Rothgang, Eva M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital</atitle><jtitle>International journal of medical informatics (Shannon, Ireland)</jtitle><addtitle>Int J Med Inform</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>192</volume><spage>105636</spage><pages>105636-</pages><artnum>105636</artnum><issn>1386-5056</issn><issn>1872-8243</issn><eissn>1872-8243</eissn><abstract>Background: The integration of Hospital Information Systems (HIS) into healthcare delivery has significantly enhanced patient care and operational efficiency. Nonetheless, the rapid acceleration of digital transformation has led to a substantial increase in the volume of data managed by these systems. This emphasizes the need for robust mechanisms for data management and quality assurance. Objective: This study addresses data quality issues related to patient identifiers within the Hospital Information System (HIS) of a regional German hospital, focusing on improving the accuracy and consistency of these administrative data entries. Methods: Employing a combination of data analysis and expert interviews, this study reviews and programmatically cleanses a dataset with over 2,000,000 patient data entries extracted from the HIS. The areas of investigation are patient admissions, discharges, and geographical data. Results: The analysis revealed that roughly 25% of the dataset was rendered unusable by errors and inconsistencies. By implementing a thorough data cleansing process, we significantly enhanced the utility of the dataset. In doing so, we identified the primary issues affecting data quality, including ambiguities among similar variables and a gap between the intended and actual use of the system. Conclusion: The findings highlight the critical importance of enhancing data quality in healthcare information systems. This study shows the necessity of a careful review of data extracted from the HIS before it can be reliably utilized for machine learning tasks, thereby rendering the data more usable for both clinical and analytical purposes.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>39357217</pmid><doi>10.1016/j.ijmedinf.2024.105636</doi><orcidid>https://orcid.org/0000-0002-0417-0336</orcidid><orcidid>https://orcid.org/0000-0003-1517-9982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-5056
ispartof International journal of medical informatics (Shannon, Ireland), 2024-12, Vol.192, p.105636, Article 105636
issn 1386-5056
1872-8243
1872-8243
language eng
recordid cdi_proquest_miscellaneous_3112527220
source ScienceDirect Freedom Collection
subjects Data cleansing
Data quality
Digital transformation in healthcare
Healthcare informatics
Hospital information systems
title Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A15%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20quality%20in%20hospital%20information%20systems:%20Lessons%20learned%20from%20analyzing%2030%20years%20of%20patient%20data%20in%20a%20regional%20German%20hospital&rft.jtitle=International%20journal%20of%20medical%20informatics%20(Shannon,%20Ireland)&rft.au=F%C3%B6rstel,%20Stefan&rft.date=2024-12-01&rft.volume=192&rft.spage=105636&rft.pages=105636-&rft.artnum=105636&rft.issn=1386-5056&rft.eissn=1872-8243&rft_id=info:doi/10.1016/j.ijmedinf.2024.105636&rft_dat=%3Cproquest_cross%3E3112527220%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-9e1be8c23f8e43af6151419361e54dff410772abb83bc8968bfaab3df9e4da6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3112527220&rft_id=info:pmid/39357217&rfr_iscdi=true