Loading…

Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging

As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize t...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-11, Vol.36 (47), p.e2412266-n/a
Main Authors: Ke, Jinlong, Chen, Shi, Xiao, Peitao, Chen, Yufang, Tang, Rui, Gao, Peng, Hu, Aiping, Liu, Jilei
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 47
container_start_page e2412266
container_title Advanced materials (Weinheim)
container_volume 36
creator Ke, Jinlong
Chen, Shi
Xiao, Peitao
Chen, Yufang
Tang, Rui
Gao, Peng
Hu, Aiping
Liu, Jilei
description As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design. The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C.
doi_str_mv 10.1002/adma.202412266
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114502138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114502138</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1966-b6d86fca4f0d0e93739c0deeaa4f845d46ce69aa41fa90caff89d62de7d8860c3</originalsourceid><addsrcrecordid>eNpdkc1OwzAQhC0EEqVw5WyJSzkE1k7ixsf-8CeKilA5R0u8aQ1pUuyUqpx4BJ6RJyFVUQ-cVjP6NBrtMHYq4EIAyEs0c7yQICMhpVJ7rCViKYIIdLzPWqDDONAqSg7ZkfevAKAVqBZb9x3hmy2nvJ4RH9l6ZrG2Vcn76Jwlxz8s8gnaonJkfr6-h-TttOTXmNmC-L0tqbYZf8R6tsK157bkEzuWnf45fyIs7OcmOYYBfy5qhzn6mg9m6KaNfcwOciw8nfzdNnu-vpoMboPR-OZu0BsFC6GVCl6USVSeYZSDAdJhN9QZGCJsnCSKTaQyUrpRIkcNGeZ5oo2ShromSRRkYZt1trkLV70vydfp3PqMigJLqpY-DYWIYpAiTBr07B_6Wi1d2bRrqFDGoqu7sqH0llo1L1inC2fn6NapgHQzQ7qZId3NkPaGD72dCn8BdkJ_JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132517972</pqid></control><display><type>article</type><title>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ke, Jinlong ; Chen, Shi ; Xiao, Peitao ; Chen, Yufang ; Tang, Rui ; Gao, Peng ; Hu, Aiping ; Liu, Jilei</creator><creatorcontrib>Ke, Jinlong ; Chen, Shi ; Xiao, Peitao ; Chen, Yufang ; Tang, Rui ; Gao, Peng ; Hu, Aiping ; Liu, Jilei</creatorcontrib><description>As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design. The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202412266</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Aspect ratio ; Charging ; Cycle ratio ; Diffusion barriers ; diffusion kinetics ; Diffusion rate ; Electrode materials ; ellipsoidal TiO2(B) ; Inhomogeneity ; Kinetics ; lithiation pathways ; Lithium-ion batteries ; Nucleation ; oriented attachment ; Oswald ripening ; Ripening ; Solid phases ; Titanium dioxide</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (47), p.e2412266-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0571-323X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ke, Jinlong</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Xiao, Peitao</creatorcontrib><creatorcontrib>Chen, Yufang</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Liu, Jilei</creatorcontrib><title>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</title><title>Advanced materials (Weinheim)</title><description>As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design. The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C.</description><subject>Anodes</subject><subject>Aspect ratio</subject><subject>Charging</subject><subject>Cycle ratio</subject><subject>Diffusion barriers</subject><subject>diffusion kinetics</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>ellipsoidal TiO2(B)</subject><subject>Inhomogeneity</subject><subject>Kinetics</subject><subject>lithiation pathways</subject><subject>Lithium-ion batteries</subject><subject>Nucleation</subject><subject>oriented attachment</subject><subject>Oswald ripening</subject><subject>Ripening</subject><subject>Solid phases</subject><subject>Titanium dioxide</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1OwzAQhC0EEqVw5WyJSzkE1k7ixsf-8CeKilA5R0u8aQ1pUuyUqpx4BJ6RJyFVUQ-cVjP6NBrtMHYq4EIAyEs0c7yQICMhpVJ7rCViKYIIdLzPWqDDONAqSg7ZkfevAKAVqBZb9x3hmy2nvJ4RH9l6ZrG2Vcn76Jwlxz8s8gnaonJkfr6-h-TttOTXmNmC-L0tqbYZf8R6tsK157bkEzuWnf45fyIs7OcmOYYBfy5qhzn6mg9m6KaNfcwOciw8nfzdNnu-vpoMboPR-OZu0BsFC6GVCl6USVSeYZSDAdJhN9QZGCJsnCSKTaQyUrpRIkcNGeZ5oo2ShromSRRkYZt1trkLV70vydfp3PqMigJLqpY-DYWIYpAiTBr07B_6Wi1d2bRrqFDGoqu7sqH0llo1L1inC2fn6NapgHQzQ7qZId3NkPaGD72dCn8BdkJ_JQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ke, Jinlong</creator><creator>Chen, Shi</creator><creator>Xiao, Peitao</creator><creator>Chen, Yufang</creator><creator>Tang, Rui</creator><creator>Gao, Peng</creator><creator>Hu, Aiping</creator><creator>Liu, Jilei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0571-323X</orcidid></search><sort><creationdate>20241101</creationdate><title>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</title><author>Ke, Jinlong ; Chen, Shi ; Xiao, Peitao ; Chen, Yufang ; Tang, Rui ; Gao, Peng ; Hu, Aiping ; Liu, Jilei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1966-b6d86fca4f0d0e93739c0deeaa4f845d46ce69aa41fa90caff89d62de7d8860c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Aspect ratio</topic><topic>Charging</topic><topic>Cycle ratio</topic><topic>Diffusion barriers</topic><topic>diffusion kinetics</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>ellipsoidal TiO2(B)</topic><topic>Inhomogeneity</topic><topic>Kinetics</topic><topic>lithiation pathways</topic><topic>Lithium-ion batteries</topic><topic>Nucleation</topic><topic>oriented attachment</topic><topic>Oswald ripening</topic><topic>Ripening</topic><topic>Solid phases</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Jinlong</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Xiao, Peitao</creatorcontrib><creatorcontrib>Chen, Yufang</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Liu, Jilei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Jinlong</au><au>Chen, Shi</au><au>Xiao, Peitao</au><au>Chen, Yufang</au><au>Tang, Rui</au><au>Gao, Peng</au><au>Hu, Aiping</au><au>Liu, Jilei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>47</issue><spage>e2412266</spage><epage>n/a</epage><pages>e2412266-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design. The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202412266</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0571-323X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-11, Vol.36 (47), p.e2412266-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3114502138
source Wiley-Blackwell Read & Publish Collection
subjects Anodes
Aspect ratio
Charging
Cycle ratio
Diffusion barriers
diffusion kinetics
Diffusion rate
Electrode materials
ellipsoidal TiO2(B)
Inhomogeneity
Kinetics
lithiation pathways
Lithium-ion batteries
Nucleation
oriented attachment
Oswald ripening
Ripening
Solid phases
Titanium dioxide
title Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20Lithiation%20Barrier%20via%20Tailored%E2%80%90Design%20Facile%20Kinetic%20Pathways%20in%20TiO2(B)%20Realizing%2050C%20Ultrafast%20Charging&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ke,%20Jinlong&rft.date=2024-11-01&rft.volume=36&rft.issue=47&rft.spage=e2412266&rft.epage=n/a&rft.pages=e2412266-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202412266&rft_dat=%3Cproquest_wiley%3E3114502138%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1966-b6d86fca4f0d0e93739c0deeaa4f845d46ce69aa41fa90caff89d62de7d8860c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132517972&rft_id=info:pmid/&rfr_iscdi=true