Loading…
Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging
As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize t...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-11, Vol.36 (47), p.e2412266-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 47 |
container_start_page | e2412266 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Ke, Jinlong Chen, Shi Xiao, Peitao Chen, Yufang Tang, Rui Gao, Peng Hu, Aiping Liu, Jilei |
description | As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design.
The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C. |
doi_str_mv | 10.1002/adma.202412266 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114502138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114502138</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1966-b6d86fca4f0d0e93739c0deeaa4f845d46ce69aa41fa90caff89d62de7d8860c3</originalsourceid><addsrcrecordid>eNpdkc1OwzAQhC0EEqVw5WyJSzkE1k7ixsf-8CeKilA5R0u8aQ1pUuyUqpx4BJ6RJyFVUQ-cVjP6NBrtMHYq4EIAyEs0c7yQICMhpVJ7rCViKYIIdLzPWqDDONAqSg7ZkfevAKAVqBZb9x3hmy2nvJ4RH9l6ZrG2Vcn76Jwlxz8s8gnaonJkfr6-h-TttOTXmNmC-L0tqbYZf8R6tsK157bkEzuWnf45fyIs7OcmOYYBfy5qhzn6mg9m6KaNfcwOciw8nfzdNnu-vpoMboPR-OZu0BsFC6GVCl6USVSeYZSDAdJhN9QZGCJsnCSKTaQyUrpRIkcNGeZ5oo2ShromSRRkYZt1trkLV70vydfp3PqMigJLqpY-DYWIYpAiTBr07B_6Wi1d2bRrqFDGoqu7sqH0llo1L1inC2fn6NapgHQzQ7qZId3NkPaGD72dCn8BdkJ_JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132517972</pqid></control><display><type>article</type><title>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Ke, Jinlong ; Chen, Shi ; Xiao, Peitao ; Chen, Yufang ; Tang, Rui ; Gao, Peng ; Hu, Aiping ; Liu, Jilei</creator><creatorcontrib>Ke, Jinlong ; Chen, Shi ; Xiao, Peitao ; Chen, Yufang ; Tang, Rui ; Gao, Peng ; Hu, Aiping ; Liu, Jilei</creatorcontrib><description>As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design.
The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202412266</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Aspect ratio ; Charging ; Cycle ratio ; Diffusion barriers ; diffusion kinetics ; Diffusion rate ; Electrode materials ; ellipsoidal TiO2(B) ; Inhomogeneity ; Kinetics ; lithiation pathways ; Lithium-ion batteries ; Nucleation ; oriented attachment ; Oswald ripening ; Ripening ; Solid phases ; Titanium dioxide</subject><ispartof>Advanced materials (Weinheim), 2024-11, Vol.36 (47), p.e2412266-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0571-323X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ke, Jinlong</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Xiao, Peitao</creatorcontrib><creatorcontrib>Chen, Yufang</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Liu, Jilei</creatorcontrib><title>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</title><title>Advanced materials (Weinheim)</title><description>As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design.
The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C.</description><subject>Anodes</subject><subject>Aspect ratio</subject><subject>Charging</subject><subject>Cycle ratio</subject><subject>Diffusion barriers</subject><subject>diffusion kinetics</subject><subject>Diffusion rate</subject><subject>Electrode materials</subject><subject>ellipsoidal TiO2(B)</subject><subject>Inhomogeneity</subject><subject>Kinetics</subject><subject>lithiation pathways</subject><subject>Lithium-ion batteries</subject><subject>Nucleation</subject><subject>oriented attachment</subject><subject>Oswald ripening</subject><subject>Ripening</subject><subject>Solid phases</subject><subject>Titanium dioxide</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc1OwzAQhC0EEqVw5WyJSzkE1k7ixsf-8CeKilA5R0u8aQ1pUuyUqpx4BJ6RJyFVUQ-cVjP6NBrtMHYq4EIAyEs0c7yQICMhpVJ7rCViKYIIdLzPWqDDONAqSg7ZkfevAKAVqBZb9x3hmy2nvJ4RH9l6ZrG2Vcn76Jwlxz8s8gnaonJkfr6-h-TttOTXmNmC-L0tqbYZf8R6tsK157bkEzuWnf45fyIs7OcmOYYBfy5qhzn6mg9m6KaNfcwOciw8nfzdNnu-vpoMboPR-OZu0BsFC6GVCl6USVSeYZSDAdJhN9QZGCJsnCSKTaQyUrpRIkcNGeZ5oo2ShromSRRkYZt1trkLV70vydfp3PqMigJLqpY-DYWIYpAiTBr07B_6Wi1d2bRrqFDGoqu7sqH0llo1L1inC2fn6NapgHQzQ7qZId3NkPaGD72dCn8BdkJ_JQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Ke, Jinlong</creator><creator>Chen, Shi</creator><creator>Xiao, Peitao</creator><creator>Chen, Yufang</creator><creator>Tang, Rui</creator><creator>Gao, Peng</creator><creator>Hu, Aiping</creator><creator>Liu, Jilei</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0571-323X</orcidid></search><sort><creationdate>20241101</creationdate><title>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</title><author>Ke, Jinlong ; Chen, Shi ; Xiao, Peitao ; Chen, Yufang ; Tang, Rui ; Gao, Peng ; Hu, Aiping ; Liu, Jilei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1966-b6d86fca4f0d0e93739c0deeaa4f845d46ce69aa41fa90caff89d62de7d8860c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Aspect ratio</topic><topic>Charging</topic><topic>Cycle ratio</topic><topic>Diffusion barriers</topic><topic>diffusion kinetics</topic><topic>Diffusion rate</topic><topic>Electrode materials</topic><topic>ellipsoidal TiO2(B)</topic><topic>Inhomogeneity</topic><topic>Kinetics</topic><topic>lithiation pathways</topic><topic>Lithium-ion batteries</topic><topic>Nucleation</topic><topic>oriented attachment</topic><topic>Oswald ripening</topic><topic>Ripening</topic><topic>Solid phases</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ke, Jinlong</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Xiao, Peitao</creatorcontrib><creatorcontrib>Chen, Yufang</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Hu, Aiping</creatorcontrib><creatorcontrib>Liu, Jilei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ke, Jinlong</au><au>Chen, Shi</au><au>Xiao, Peitao</au><au>Chen, Yufang</au><au>Tang, Rui</au><au>Gao, Peng</au><au>Hu, Aiping</au><au>Liu, Jilei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>36</volume><issue>47</issue><spage>e2412266</spage><epage>n/a</epage><pages>e2412266-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>As a promising anode material for fast charging lithium‐ion batteries, bronze‐phase titanium dioxide (TiO2(B)) still faces the challenge of sluggish Li+ diffusion kinetics in the solid phase during lithiation/delithiation processes. Herein, a facile synthetic strategy has been proposed to optimize the microstructure of TiO2(B), which enables facilitated lithiation and therefore significantly improved rate performance. The rice‐granular nanoparticles with precisely controlled aspect ratios (AR) can be obtained via manipulating the ligand concentrations that affect nucleation and oriented attachment processes, as well as adjusting the calcination temperatures to control the Oswald ripening process. As a result, the smaller ab plane in rice‐granular TiO2(B) enhances Li+ diffusion efficiency on C’ site and inhibits the inhomogeneity of Li+ between inter and inside particles. Benefiting from breaking the Li+ diffusion kinetics, the rice‐granular TiO2(B) maintains a high specific capacity of 159.5 mAh g−1 at 50C, with an excellent capacity retention ratio of 93.67% after 5000 cycles at 10C. This work provides an efficient and simple strategy to minimize the challenging lithiation paths in TiO2(B) anode, and offers new opportunities for high rate battery design.
The consistent lithiation path and morphology anisotropy of rice‐granular TiO2(B) is important to minimize the challenging lithiation on the C’ site, thus leads to enhanced Li+ diffusion efficiency and homogeneous Li+ distribution, including a high specific capacity of 159.5 mAh g−1 at 50C and a remarkable capacity retention ratio of 93.67% after 5000 cycles at 10C.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202412266</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0571-323X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-11, Vol.36 (47), p.e2412266-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3114502138 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Anodes Aspect ratio Charging Cycle ratio Diffusion barriers diffusion kinetics Diffusion rate Electrode materials ellipsoidal TiO2(B) Inhomogeneity Kinetics lithiation pathways Lithium-ion batteries Nucleation oriented attachment Oswald ripening Ripening Solid phases Titanium dioxide |
title | Breaking the Lithiation Barrier via Tailored‐Design Facile Kinetic Pathways in TiO2(B) Realizing 50C Ultrafast Charging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breaking%20the%20Lithiation%20Barrier%20via%20Tailored%E2%80%90Design%20Facile%20Kinetic%20Pathways%20in%20TiO2(B)%20Realizing%2050C%20Ultrafast%20Charging&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ke,%20Jinlong&rft.date=2024-11-01&rft.volume=36&rft.issue=47&rft.spage=e2412266&rft.epage=n/a&rft.pages=e2412266-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202412266&rft_dat=%3Cproquest_wiley%3E3114502138%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1966-b6d86fca4f0d0e93739c0deeaa4f845d46ce69aa41fa90caff89d62de7d8860c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132517972&rft_id=info:pmid/&rfr_iscdi=true |