Loading…
Rapid Degradation of Dye Effluents with A SnS Catalyst: A Sustainable Approach Using Natural Light Under Ambient Conditions
Dye degradation presents a persistent challenge in addressing water pollution. While several methods, including adsorption, biodegradation, and advanced oxidation processes, have been extensively explored, photocatalysis remains one of the most effective techniques. Conventional photocatalytic dye d...
Saved in:
Published in: | Chemistry, an Asian journal an Asian journal, 2024-11, p.e202401003 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c180t-ec08bb94d64b4c709ae9ab23c423705454d0e19e462a4412ce4f6d954385c2ad3 |
container_end_page | |
container_issue | |
container_start_page | e202401003 |
container_title | Chemistry, an Asian journal |
container_volume | |
creator | Bhatia, Geetanjali Jagirdar, Balaji R |
description | Dye degradation presents a persistent challenge in addressing water pollution. While several methods, including adsorption, biodegradation, and advanced oxidation processes, have been extensively explored, photocatalysis remains one of the most effective techniques. Conventional photocatalytic dye degradation processes often rely on expensive light sources and are time-intensive. Herein, we synthesized a SnS catalyst by the solvated metal atom dispersion (SMAD) method, using Sn foil and sulfur powder. The catalyst exhibited remarkable performance, achieving complete degradation of methylene blue within 2 minutes under ambient room light, without the need for any external light source. Similar degradation efficiency was achieved for methyl orange. To evaluate the role of light for the degradation, control experiments were conducted in the dark using methylene blue as a model dye. Although the degradation rate was slightly reduced, the catalyst still facilitated dye degradation in the absence of light. Additionally, the catalytic performance was tested with four other dyes under natural light, all of which yielded promising results, demonstrating the versatility and effectiveness of the SnS catalyst in dye degradation. This work highlights the potential of the SnS catalyst for efficient and rapid dye degradation under both light and dark conditions, offering an energy-efficient solution for wastewater treatment. |
doi_str_mv | 10.1002/asia.202401003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114502388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114502388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c180t-ec08bb94d64b4c709ae9ab23c423705454d0e19e462a4412ce4f6d954385c2ad3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbK1uXcos3aTOK-nEXWjrA4qCteAu3MxM2pG8zEyQ4p83wdrVvQfOPffwIXRNyZQSwu7AWZgywgTpJT9BYyojGogZ_Tg97kyO0IVzn4SEjMTyHI14zCXjIRmjnzdorMYLs21Bg7d1hescL_YGL_O86EzlHf62focTvK7WeA4eir3z94PunAdbQVYYnDRNW4Pa4Y2z1Ra_gO9aKPDKbncebyptWpyUme3j8LyutB0euUt0lkPhzNVhTtDmYfk-fwpWr4_P82QVKCqJD4wiMstioSORCTUjMZgYMsaVYHxGQhEKTQyNjYgYCEGZMiKPdBwKLkPFQPMJuv3L7Tt-dcb5tLROmaKAytSdSzmlIiSMS9lbp39W1dbOtSZPm9aW0O5TStIBeDoAT4_A-4ObQ3aXlUYf7f-E-S8aCXv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114502388</pqid></control><display><type>article</type><title>Rapid Degradation of Dye Effluents with A SnS Catalyst: A Sustainable Approach Using Natural Light Under Ambient Conditions</title><source>Wiley</source><creator>Bhatia, Geetanjali ; Jagirdar, Balaji R</creator><creatorcontrib>Bhatia, Geetanjali ; Jagirdar, Balaji R</creatorcontrib><description>Dye degradation presents a persistent challenge in addressing water pollution. While several methods, including adsorption, biodegradation, and advanced oxidation processes, have been extensively explored, photocatalysis remains one of the most effective techniques. Conventional photocatalytic dye degradation processes often rely on expensive light sources and are time-intensive. Herein, we synthesized a SnS catalyst by the solvated metal atom dispersion (SMAD) method, using Sn foil and sulfur powder. The catalyst exhibited remarkable performance, achieving complete degradation of methylene blue within 2 minutes under ambient room light, without the need for any external light source. Similar degradation efficiency was achieved for methyl orange. To evaluate the role of light for the degradation, control experiments were conducted in the dark using methylene blue as a model dye. Although the degradation rate was slightly reduced, the catalyst still facilitated dye degradation in the absence of light. Additionally, the catalytic performance was tested with four other dyes under natural light, all of which yielded promising results, demonstrating the versatility and effectiveness of the SnS catalyst in dye degradation. This work highlights the potential of the SnS catalyst for efficient and rapid dye degradation under both light and dark conditions, offering an energy-efficient solution for wastewater treatment.</description><identifier>ISSN: 1861-4728</identifier><identifier>ISSN: 1861-471X</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.202401003</identifier><identifier>PMID: 39382350</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Chemistry, an Asian journal, 2024-11, p.e202401003</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c180t-ec08bb94d64b4c709ae9ab23c423705454d0e19e462a4412ce4f6d954385c2ad3</cites><orcidid>0000-0002-0048-2252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39382350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhatia, Geetanjali</creatorcontrib><creatorcontrib>Jagirdar, Balaji R</creatorcontrib><title>Rapid Degradation of Dye Effluents with A SnS Catalyst: A Sustainable Approach Using Natural Light Under Ambient Conditions</title><title>Chemistry, an Asian journal</title><addtitle>Chem Asian J</addtitle><description>Dye degradation presents a persistent challenge in addressing water pollution. While several methods, including adsorption, biodegradation, and advanced oxidation processes, have been extensively explored, photocatalysis remains one of the most effective techniques. Conventional photocatalytic dye degradation processes often rely on expensive light sources and are time-intensive. Herein, we synthesized a SnS catalyst by the solvated metal atom dispersion (SMAD) method, using Sn foil and sulfur powder. The catalyst exhibited remarkable performance, achieving complete degradation of methylene blue within 2 minutes under ambient room light, without the need for any external light source. Similar degradation efficiency was achieved for methyl orange. To evaluate the role of light for the degradation, control experiments were conducted in the dark using methylene blue as a model dye. Although the degradation rate was slightly reduced, the catalyst still facilitated dye degradation in the absence of light. Additionally, the catalytic performance was tested with four other dyes under natural light, all of which yielded promising results, demonstrating the versatility and effectiveness of the SnS catalyst in dye degradation. This work highlights the potential of the SnS catalyst for efficient and rapid dye degradation under both light and dark conditions, offering an energy-efficient solution for wastewater treatment.</description><issn>1861-4728</issn><issn>1861-471X</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbK1uXcos3aTOK-nEXWjrA4qCteAu3MxM2pG8zEyQ4p83wdrVvQfOPffwIXRNyZQSwu7AWZgywgTpJT9BYyojGogZ_Tg97kyO0IVzn4SEjMTyHI14zCXjIRmjnzdorMYLs21Bg7d1hescL_YGL_O86EzlHf62focTvK7WeA4eir3z94PunAdbQVYYnDRNW4Pa4Y2z1Ra_gO9aKPDKbncebyptWpyUme3j8LyutB0euUt0lkPhzNVhTtDmYfk-fwpWr4_P82QVKCqJD4wiMstioSORCTUjMZgYMsaVYHxGQhEKTQyNjYgYCEGZMiKPdBwKLkPFQPMJuv3L7Tt-dcb5tLROmaKAytSdSzmlIiSMS9lbp39W1dbOtSZPm9aW0O5TStIBeDoAT4_A-4ObQ3aXlUYf7f-E-S8aCXv4</recordid><startdate>20241113</startdate><enddate>20241113</enddate><creator>Bhatia, Geetanjali</creator><creator>Jagirdar, Balaji R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0048-2252</orcidid></search><sort><creationdate>20241113</creationdate><title>Rapid Degradation of Dye Effluents with A SnS Catalyst: A Sustainable Approach Using Natural Light Under Ambient Conditions</title><author>Bhatia, Geetanjali ; Jagirdar, Balaji R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c180t-ec08bb94d64b4c709ae9ab23c423705454d0e19e462a4412ce4f6d954385c2ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatia, Geetanjali</creatorcontrib><creatorcontrib>Jagirdar, Balaji R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatia, Geetanjali</au><au>Jagirdar, Balaji R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Degradation of Dye Effluents with A SnS Catalyst: A Sustainable Approach Using Natural Light Under Ambient Conditions</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem Asian J</addtitle><date>2024-11-13</date><risdate>2024</risdate><spage>e202401003</spage><pages>e202401003-</pages><issn>1861-4728</issn><issn>1861-471X</issn><eissn>1861-471X</eissn><abstract>Dye degradation presents a persistent challenge in addressing water pollution. While several methods, including adsorption, biodegradation, and advanced oxidation processes, have been extensively explored, photocatalysis remains one of the most effective techniques. Conventional photocatalytic dye degradation processes often rely on expensive light sources and are time-intensive. Herein, we synthesized a SnS catalyst by the solvated metal atom dispersion (SMAD) method, using Sn foil and sulfur powder. The catalyst exhibited remarkable performance, achieving complete degradation of methylene blue within 2 minutes under ambient room light, without the need for any external light source. Similar degradation efficiency was achieved for methyl orange. To evaluate the role of light for the degradation, control experiments were conducted in the dark using methylene blue as a model dye. Although the degradation rate was slightly reduced, the catalyst still facilitated dye degradation in the absence of light. Additionally, the catalytic performance was tested with four other dyes under natural light, all of which yielded promising results, demonstrating the versatility and effectiveness of the SnS catalyst in dye degradation. This work highlights the potential of the SnS catalyst for efficient and rapid dye degradation under both light and dark conditions, offering an energy-efficient solution for wastewater treatment.</abstract><cop>Germany</cop><pmid>39382350</pmid><doi>10.1002/asia.202401003</doi><orcidid>https://orcid.org/0000-0002-0048-2252</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-4728 |
ispartof | Chemistry, an Asian journal, 2024-11, p.e202401003 |
issn | 1861-4728 1861-471X 1861-471X |
language | eng |
recordid | cdi_proquest_miscellaneous_3114502388 |
source | Wiley |
title | Rapid Degradation of Dye Effluents with A SnS Catalyst: A Sustainable Approach Using Natural Light Under Ambient Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Degradation%20of%20Dye%20Effluents%20with%20A%20SnS%20Catalyst:%20A%20Sustainable%20Approach%20Using%20Natural%20Light%20Under%20Ambient%20Conditions&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Bhatia,%20Geetanjali&rft.date=2024-11-13&rft.spage=e202401003&rft.pages=e202401003-&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.202401003&rft_dat=%3Cproquest_cross%3E3114502388%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c180t-ec08bb94d64b4c709ae9ab23c423705454d0e19e462a4412ce4f6d954385c2ad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3114502388&rft_id=info:pmid/39382350&rfr_iscdi=true |