Loading…

Diagnostic Performance for Detection of Glaucomatous Structural Damage Using Pixelwise Analysis of Retinal Thickness Measurements

To compare the diagnostic accuracy of thickness measurements of individual and combined macular retinal layers to discriminate 188 glaucomatous and 148 glaucoma suspect eyes from 362 healthy control (HC) eyes on a pixel-by-pixel basis. For this retrospective study, we manually corrected the segmenta...

Full description

Saved in:
Bibliographic Details
Published in:Investigative ophthalmology & visual science 2024-10, Vol.65 (12), p.17
Main Authors: Yang, Hongli, Reynaud, Juan, Sharpe, Glen P, Jennings, Dawn, Albert, Cindy, Holthausen, Trinity, Jiang, Xiue, Demirel, Shaban, Mansberger, Steven L, Nicolela, Marcelo T, Gardiner, Stuart K, Chauhan, Balwantray C, Burgoyne, Claude F, Fortune, Brad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-18104f1e4466188cb10ac5b523969f6481c480e9417818029d049722e9310cf73
container_end_page
container_issue 12
container_start_page 17
container_title Investigative ophthalmology & visual science
container_volume 65
creator Yang, Hongli
Reynaud, Juan
Sharpe, Glen P
Jennings, Dawn
Albert, Cindy
Holthausen, Trinity
Jiang, Xiue
Demirel, Shaban
Mansberger, Steven L
Nicolela, Marcelo T
Gardiner, Stuart K
Chauhan, Balwantray C
Burgoyne, Claude F
Fortune, Brad
description To compare the diagnostic accuracy of thickness measurements of individual and combined macular retinal layers to discriminate 188 glaucomatous and 148 glaucoma suspect eyes from 362 healthy control (HC) eyes on a pixel-by-pixel basis. For this retrospective study, we manually corrected the segmentations of posterior pole optical coherence tomography (OCT) scans to determine the thickness of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), the ganglion cell complex (GCC), and the total neural retina (TR). For each eye, the total number of pixels with thickness values less than the fifth percentile of the HC distribution was used to create a receiver operating characteristic (ROC) curve for each layer and for layer combinations. Using total abnormal pixel count criteria to discriminate glaucoma from HC eyes, the individual layers with the highest area under the ROC curve (AUC) were the NFL and GCL; IPL performance was significantly lower (P < 0.05). GCC had a significant higher AUC (94.3%) than individual the AUC of the NFL (92.3%) (P = 0.0231) but not higher than AUC of the GCL (93.4%) (P = 0.3487). The highest AUC (95.4%) and sensitivity (85.1%) at 95% specificity was found for the Boolean combination of NFL or GCL. The highest AUC is not significantly higher (P = 0.0882) than the AUC of the GCC but the highest sensitivity is significantly higher than the sensitivity of the GCC. This pattern was similar for discriminating between suspect and HC eyes (P = 0.0356). Using pixel-based methods, the diagnostic accuracy of NFL and GCL exceeded that of IPL and TR. GCC had equivalent performance as NFL and GCL. The specific spatial locations within the posterior pole that exhibit best performance vary depending on which layer is being assessed. Recognizing this dependency highlights the importance of considering multiple layers independently, as they offer complementary information for effective and comprehensive diagnosis.
doi_str_mv 10.1167/iovs.65.12.17
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3114502857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114502857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-18104f1e4466188cb10ac5b523969f6481c480e9417818029d049722e9310cf73</originalsourceid><addsrcrecordid>eNpNkDlPxDAQRi0E4i5pkUuaLB4nTpwSsVwSCMRRW14zWQxJDB6Ho-SfsxGHqOYb6c0nzWNsB8QEoKz2fXilSakmICdQLbF1UEpmqtL58r-8xjaIHoWQAFKssrW8zrXUlV5nn1Nv532g5B2_wtiE2NneIV8EPsWELvnQ89Dwk9YOLnQ2hYH4TYqDS0O0LZ_azs6R35Hv5_zKv2P75gn5QW_bD_I0nl5j8ouV3z5499QjEb9AS0PEDvtEW2ylsS3h9s_cZHfHR7eHp9n55cnZ4cF55iTolIEGUTSARVGWoLWbgbBOzZTM67JuykKDK7TAuoBKgxayvhdFXUmJdQ7CNVW-yfa-e59jeBmQkuk8OWxb2-PiJ5MDFEpIrUY0-0ZdDEQRG_McfWfjhwFhRutmtG5KZUAaGPndn-ph1uH9H_2rOf8CiCp_Jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114502857</pqid></control><display><type>article</type><title>Diagnostic Performance for Detection of Glaucomatous Structural Damage Using Pixelwise Analysis of Retinal Thickness Measurements</title><source>PubMed Central (PMC)</source><creator>Yang, Hongli ; Reynaud, Juan ; Sharpe, Glen P ; Jennings, Dawn ; Albert, Cindy ; Holthausen, Trinity ; Jiang, Xiue ; Demirel, Shaban ; Mansberger, Steven L ; Nicolela, Marcelo T ; Gardiner, Stuart K ; Chauhan, Balwantray C ; Burgoyne, Claude F ; Fortune, Brad</creator><creatorcontrib>Yang, Hongli ; Reynaud, Juan ; Sharpe, Glen P ; Jennings, Dawn ; Albert, Cindy ; Holthausen, Trinity ; Jiang, Xiue ; Demirel, Shaban ; Mansberger, Steven L ; Nicolela, Marcelo T ; Gardiner, Stuart K ; Chauhan, Balwantray C ; Burgoyne, Claude F ; Fortune, Brad</creatorcontrib><description>To compare the diagnostic accuracy of thickness measurements of individual and combined macular retinal layers to discriminate 188 glaucomatous and 148 glaucoma suspect eyes from 362 healthy control (HC) eyes on a pixel-by-pixel basis. For this retrospective study, we manually corrected the segmentations of posterior pole optical coherence tomography (OCT) scans to determine the thickness of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), the ganglion cell complex (GCC), and the total neural retina (TR). For each eye, the total number of pixels with thickness values less than the fifth percentile of the HC distribution was used to create a receiver operating characteristic (ROC) curve for each layer and for layer combinations. Using total abnormal pixel count criteria to discriminate glaucoma from HC eyes, the individual layers with the highest area under the ROC curve (AUC) were the NFL and GCL; IPL performance was significantly lower (P &lt; 0.05). GCC had a significant higher AUC (94.3%) than individual the AUC of the NFL (92.3%) (P = 0.0231) but not higher than AUC of the GCL (93.4%) (P = 0.3487). The highest AUC (95.4%) and sensitivity (85.1%) at 95% specificity was found for the Boolean combination of NFL or GCL. The highest AUC is not significantly higher (P = 0.0882) than the AUC of the GCC but the highest sensitivity is significantly higher than the sensitivity of the GCC. This pattern was similar for discriminating between suspect and HC eyes (P = 0.0356). Using pixel-based methods, the diagnostic accuracy of NFL and GCL exceeded that of IPL and TR. GCC had equivalent performance as NFL and GCL. The specific spatial locations within the posterior pole that exhibit best performance vary depending on which layer is being assessed. Recognizing this dependency highlights the importance of considering multiple layers independently, as they offer complementary information for effective and comprehensive diagnosis.</description><identifier>ISSN: 1552-5783</identifier><identifier>EISSN: 1552-5783</identifier><identifier>DOI: 10.1167/iovs.65.12.17</identifier><identifier>PMID: 39382878</identifier><language>eng</language><publisher>United States</publisher><subject>Aged ; Female ; Glaucoma - diagnosis ; Humans ; Intraocular Pressure - physiology ; Male ; Middle Aged ; Nerve Fibers - pathology ; Optic Disk - diagnostic imaging ; Optic Disk - pathology ; Retina - diagnostic imaging ; Retina - pathology ; Retinal Ganglion Cells - pathology ; Retrospective Studies ; ROC Curve ; Tomography, Optical Coherence - methods ; Visual Fields - physiology</subject><ispartof>Investigative ophthalmology &amp; visual science, 2024-10, Vol.65 (12), p.17</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-18104f1e4466188cb10ac5b523969f6481c480e9417818029d049722e9310cf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39382878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Hongli</creatorcontrib><creatorcontrib>Reynaud, Juan</creatorcontrib><creatorcontrib>Sharpe, Glen P</creatorcontrib><creatorcontrib>Jennings, Dawn</creatorcontrib><creatorcontrib>Albert, Cindy</creatorcontrib><creatorcontrib>Holthausen, Trinity</creatorcontrib><creatorcontrib>Jiang, Xiue</creatorcontrib><creatorcontrib>Demirel, Shaban</creatorcontrib><creatorcontrib>Mansberger, Steven L</creatorcontrib><creatorcontrib>Nicolela, Marcelo T</creatorcontrib><creatorcontrib>Gardiner, Stuart K</creatorcontrib><creatorcontrib>Chauhan, Balwantray C</creatorcontrib><creatorcontrib>Burgoyne, Claude F</creatorcontrib><creatorcontrib>Fortune, Brad</creatorcontrib><title>Diagnostic Performance for Detection of Glaucomatous Structural Damage Using Pixelwise Analysis of Retinal Thickness Measurements</title><title>Investigative ophthalmology &amp; visual science</title><addtitle>Invest Ophthalmol Vis Sci</addtitle><description>To compare the diagnostic accuracy of thickness measurements of individual and combined macular retinal layers to discriminate 188 glaucomatous and 148 glaucoma suspect eyes from 362 healthy control (HC) eyes on a pixel-by-pixel basis. For this retrospective study, we manually corrected the segmentations of posterior pole optical coherence tomography (OCT) scans to determine the thickness of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), the ganglion cell complex (GCC), and the total neural retina (TR). For each eye, the total number of pixels with thickness values less than the fifth percentile of the HC distribution was used to create a receiver operating characteristic (ROC) curve for each layer and for layer combinations. Using total abnormal pixel count criteria to discriminate glaucoma from HC eyes, the individual layers with the highest area under the ROC curve (AUC) were the NFL and GCL; IPL performance was significantly lower (P &lt; 0.05). GCC had a significant higher AUC (94.3%) than individual the AUC of the NFL (92.3%) (P = 0.0231) but not higher than AUC of the GCL (93.4%) (P = 0.3487). The highest AUC (95.4%) and sensitivity (85.1%) at 95% specificity was found for the Boolean combination of NFL or GCL. The highest AUC is not significantly higher (P = 0.0882) than the AUC of the GCC but the highest sensitivity is significantly higher than the sensitivity of the GCC. This pattern was similar for discriminating between suspect and HC eyes (P = 0.0356). Using pixel-based methods, the diagnostic accuracy of NFL and GCL exceeded that of IPL and TR. GCC had equivalent performance as NFL and GCL. The specific spatial locations within the posterior pole that exhibit best performance vary depending on which layer is being assessed. Recognizing this dependency highlights the importance of considering multiple layers independently, as they offer complementary information for effective and comprehensive diagnosis.</description><subject>Aged</subject><subject>Female</subject><subject>Glaucoma - diagnosis</subject><subject>Humans</subject><subject>Intraocular Pressure - physiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Nerve Fibers - pathology</subject><subject>Optic Disk - diagnostic imaging</subject><subject>Optic Disk - pathology</subject><subject>Retina - diagnostic imaging</subject><subject>Retina - pathology</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Visual Fields - physiology</subject><issn>1552-5783</issn><issn>1552-5783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDlPxDAQRi0E4i5pkUuaLB4nTpwSsVwSCMRRW14zWQxJDB6Ho-SfsxGHqOYb6c0nzWNsB8QEoKz2fXilSakmICdQLbF1UEpmqtL58r-8xjaIHoWQAFKssrW8zrXUlV5nn1Nv532g5B2_wtiE2NneIV8EPsWELvnQ89Dwk9YOLnQ2hYH4TYqDS0O0LZ_azs6R35Hv5_zKv2P75gn5QW_bD_I0nl5j8ouV3z5499QjEb9AS0PEDvtEW2ylsS3h9s_cZHfHR7eHp9n55cnZ4cF55iTolIEGUTSARVGWoLWbgbBOzZTM67JuykKDK7TAuoBKgxayvhdFXUmJdQ7CNVW-yfa-e59jeBmQkuk8OWxb2-PiJ5MDFEpIrUY0-0ZdDEQRG_McfWfjhwFhRutmtG5KZUAaGPndn-ph1uH9H_2rOf8CiCp_Jw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Yang, Hongli</creator><creator>Reynaud, Juan</creator><creator>Sharpe, Glen P</creator><creator>Jennings, Dawn</creator><creator>Albert, Cindy</creator><creator>Holthausen, Trinity</creator><creator>Jiang, Xiue</creator><creator>Demirel, Shaban</creator><creator>Mansberger, Steven L</creator><creator>Nicolela, Marcelo T</creator><creator>Gardiner, Stuart K</creator><creator>Chauhan, Balwantray C</creator><creator>Burgoyne, Claude F</creator><creator>Fortune, Brad</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241001</creationdate><title>Diagnostic Performance for Detection of Glaucomatous Structural Damage Using Pixelwise Analysis of Retinal Thickness Measurements</title><author>Yang, Hongli ; Reynaud, Juan ; Sharpe, Glen P ; Jennings, Dawn ; Albert, Cindy ; Holthausen, Trinity ; Jiang, Xiue ; Demirel, Shaban ; Mansberger, Steven L ; Nicolela, Marcelo T ; Gardiner, Stuart K ; Chauhan, Balwantray C ; Burgoyne, Claude F ; Fortune, Brad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-18104f1e4466188cb10ac5b523969f6481c480e9417818029d049722e9310cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aged</topic><topic>Female</topic><topic>Glaucoma - diagnosis</topic><topic>Humans</topic><topic>Intraocular Pressure - physiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Nerve Fibers - pathology</topic><topic>Optic Disk - diagnostic imaging</topic><topic>Optic Disk - pathology</topic><topic>Retina - diagnostic imaging</topic><topic>Retina - pathology</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Visual Fields - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hongli</creatorcontrib><creatorcontrib>Reynaud, Juan</creatorcontrib><creatorcontrib>Sharpe, Glen P</creatorcontrib><creatorcontrib>Jennings, Dawn</creatorcontrib><creatorcontrib>Albert, Cindy</creatorcontrib><creatorcontrib>Holthausen, Trinity</creatorcontrib><creatorcontrib>Jiang, Xiue</creatorcontrib><creatorcontrib>Demirel, Shaban</creatorcontrib><creatorcontrib>Mansberger, Steven L</creatorcontrib><creatorcontrib>Nicolela, Marcelo T</creatorcontrib><creatorcontrib>Gardiner, Stuart K</creatorcontrib><creatorcontrib>Chauhan, Balwantray C</creatorcontrib><creatorcontrib>Burgoyne, Claude F</creatorcontrib><creatorcontrib>Fortune, Brad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Investigative ophthalmology &amp; visual science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hongli</au><au>Reynaud, Juan</au><au>Sharpe, Glen P</au><au>Jennings, Dawn</au><au>Albert, Cindy</au><au>Holthausen, Trinity</au><au>Jiang, Xiue</au><au>Demirel, Shaban</au><au>Mansberger, Steven L</au><au>Nicolela, Marcelo T</au><au>Gardiner, Stuart K</au><au>Chauhan, Balwantray C</au><au>Burgoyne, Claude F</au><au>Fortune, Brad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnostic Performance for Detection of Glaucomatous Structural Damage Using Pixelwise Analysis of Retinal Thickness Measurements</atitle><jtitle>Investigative ophthalmology &amp; visual science</jtitle><addtitle>Invest Ophthalmol Vis Sci</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>65</volume><issue>12</issue><spage>17</spage><pages>17-</pages><issn>1552-5783</issn><eissn>1552-5783</eissn><abstract>To compare the diagnostic accuracy of thickness measurements of individual and combined macular retinal layers to discriminate 188 glaucomatous and 148 glaucoma suspect eyes from 362 healthy control (HC) eyes on a pixel-by-pixel basis. For this retrospective study, we manually corrected the segmentations of posterior pole optical coherence tomography (OCT) scans to determine the thickness of the nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), the ganglion cell complex (GCC), and the total neural retina (TR). For each eye, the total number of pixels with thickness values less than the fifth percentile of the HC distribution was used to create a receiver operating characteristic (ROC) curve for each layer and for layer combinations. Using total abnormal pixel count criteria to discriminate glaucoma from HC eyes, the individual layers with the highest area under the ROC curve (AUC) were the NFL and GCL; IPL performance was significantly lower (P &lt; 0.05). GCC had a significant higher AUC (94.3%) than individual the AUC of the NFL (92.3%) (P = 0.0231) but not higher than AUC of the GCL (93.4%) (P = 0.3487). The highest AUC (95.4%) and sensitivity (85.1%) at 95% specificity was found for the Boolean combination of NFL or GCL. The highest AUC is not significantly higher (P = 0.0882) than the AUC of the GCC but the highest sensitivity is significantly higher than the sensitivity of the GCC. This pattern was similar for discriminating between suspect and HC eyes (P = 0.0356). Using pixel-based methods, the diagnostic accuracy of NFL and GCL exceeded that of IPL and TR. GCC had equivalent performance as NFL and GCL. The specific spatial locations within the posterior pole that exhibit best performance vary depending on which layer is being assessed. Recognizing this dependency highlights the importance of considering multiple layers independently, as they offer complementary information for effective and comprehensive diagnosis.</abstract><cop>United States</cop><pmid>39382878</pmid><doi>10.1167/iovs.65.12.17</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5783
ispartof Investigative ophthalmology & visual science, 2024-10, Vol.65 (12), p.17
issn 1552-5783
1552-5783
language eng
recordid cdi_proquest_miscellaneous_3114502857
source PubMed Central (PMC)
subjects Aged
Female
Glaucoma - diagnosis
Humans
Intraocular Pressure - physiology
Male
Middle Aged
Nerve Fibers - pathology
Optic Disk - diagnostic imaging
Optic Disk - pathology
Retina - diagnostic imaging
Retina - pathology
Retinal Ganglion Cells - pathology
Retrospective Studies
ROC Curve
Tomography, Optical Coherence - methods
Visual Fields - physiology
title Diagnostic Performance for Detection of Glaucomatous Structural Damage Using Pixelwise Analysis of Retinal Thickness Measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnostic%20Performance%20for%20Detection%20of%20Glaucomatous%20Structural%20Damage%20Using%20Pixelwise%20Analysis%20of%20Retinal%20Thickness%20Measurements&rft.jtitle=Investigative%20ophthalmology%20&%20visual%20science&rft.au=Yang,%20Hongli&rft.date=2024-10-01&rft.volume=65&rft.issue=12&rft.spage=17&rft.pages=17-&rft.issn=1552-5783&rft.eissn=1552-5783&rft_id=info:doi/10.1167/iovs.65.12.17&rft_dat=%3Cproquest_cross%3E3114502857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-18104f1e4466188cb10ac5b523969f6481c480e9417818029d049722e9310cf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3114502857&rft_id=info:pmid/39382878&rfr_iscdi=true