Loading…
Magnetic Induction Heating-Driven Rapid Cold Start of Ammonia Decomposition for Hydrogen Production
The advantages of ammonia as a hydrogen carrier have led to proposals for on-site hydrogen production through its decomposition. Rapid cold start of ammonia decomposition is crucial for applications such as ammonia-powered vehicles, but conventional heating methods are challenged by the high decompo...
Saved in:
Published in: | Journal of the American Chemical Society 2024-10, Vol.146 (42), p.28635-28641 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a211t-845dafa422ae888f385aa2c20a52ff035bf031177c8fbba6475a3d5006e5c503 |
container_end_page | 28641 |
container_issue | 42 |
container_start_page | 28635 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Zhang, Ruiqi Liu, Xingwu Song, Ningning He, Jiahao Cen, Zeyan Li, Chengyu Wang, Maolin Tang, Haoyi Liu, Wei Ren, Xiao Ma, Ding |
description | The advantages of ammonia as a hydrogen carrier have led to proposals for on-site hydrogen production through its decomposition. Rapid cold start of ammonia decomposition is crucial for applications such as ammonia-powered vehicles, but conventional heating methods are challenged by the high decomposition temperature of ammonia. In this study, we successfully achieved the rapid cold start of ammonia decomposition using Co nanoparticle catalysts driven by magnetic induction heating, demonstrating excellent catalytic performance and stability. The magnetic induction heating-driven ammonia decomposition system was integrated with a hydrogen fuel cell, proving its ability to achieve the cold start of ammonia decomposition within 10 s, as demonstrated by comparative experiments using 75% H2-25% N2 from a gas cylinder as the control. This study provides a deeper understanding of hysteresis heating catalysis, promoting the practical use of ammonia as a hydrogen carrier for rapid hydrogen production in the energy industry. |
doi_str_mv | 10.1021/jacs.4c10851 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115093859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115093859</sourcerecordid><originalsourceid>FETCH-LOGICAL-a211t-845dafa422ae888f385aa2c20a52ff035bf031177c8fbba6475a3d5006e5c503</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EoqWwMSOPDKTYTpy4Y9UCrVQEgu7RxbErV4ld7ASp_56UBlhY7nTS997pPYSuKRlTwuj9FmQYJ5ISwekJGlLOSMQpS0_RkBDCokyk8QBdhLDtzoQJeo4G8SQWbJKyIZLPsLGqMRIvbdnKxjiLFwoaYzfR3JtPZfEb7EyJZ64q8XsDvsFO42ldO2sAz5V09c4F8y3UzuPFvvRu08levesNL9GZhiqoq36P0PrxYT1bRKuXp-VsuoqAUdpEIuElaEgYAyWE0LHgAEwyApxpTWJedIPSLJNCFwWkScYhLjkhqeKSk3iEbo-2O-8-WhWavDZBqqoCq1wb8k7LSRecTzr07ohK70LwSuc7b2rw-5yS_NBqfmg171vt8JveuS1qVf7CPzX-vT6otq71tsv5v9cXN6CAoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115093859</pqid></control><display><type>article</type><title>Magnetic Induction Heating-Driven Rapid Cold Start of Ammonia Decomposition for Hydrogen Production</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Ruiqi ; Liu, Xingwu ; Song, Ningning ; He, Jiahao ; Cen, Zeyan ; Li, Chengyu ; Wang, Maolin ; Tang, Haoyi ; Liu, Wei ; Ren, Xiao ; Ma, Ding</creator><creatorcontrib>Zhang, Ruiqi ; Liu, Xingwu ; Song, Ningning ; He, Jiahao ; Cen, Zeyan ; Li, Chengyu ; Wang, Maolin ; Tang, Haoyi ; Liu, Wei ; Ren, Xiao ; Ma, Ding</creatorcontrib><description>The advantages of ammonia as a hydrogen carrier have led to proposals for on-site hydrogen production through its decomposition. Rapid cold start of ammonia decomposition is crucial for applications such as ammonia-powered vehicles, but conventional heating methods are challenged by the high decomposition temperature of ammonia. In this study, we successfully achieved the rapid cold start of ammonia decomposition using Co nanoparticle catalysts driven by magnetic induction heating, demonstrating excellent catalytic performance and stability. The magnetic induction heating-driven ammonia decomposition system was integrated with a hydrogen fuel cell, proving its ability to achieve the cold start of ammonia decomposition within 10 s, as demonstrated by comparative experiments using 75% H2-25% N2 from a gas cylinder as the control. This study provides a deeper understanding of hysteresis heating catalysis, promoting the practical use of ammonia as a hydrogen carrier for rapid hydrogen production in the energy industry.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c10851</identifier><identifier>PMID: 39382962</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2024-10, Vol.146 (42), p.28635-28641</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a211t-845dafa422ae888f385aa2c20a52ff035bf031177c8fbba6475a3d5006e5c503</cites><orcidid>0000-0002-8564-1151 ; 0009-0002-4511-4864 ; 0009-0007-8596-6881 ; 0000-0002-3341-2998 ; 0000-0002-0114-1759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39382962$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Liu, Xingwu</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><creatorcontrib>He, Jiahao</creatorcontrib><creatorcontrib>Cen, Zeyan</creatorcontrib><creatorcontrib>Li, Chengyu</creatorcontrib><creatorcontrib>Wang, Maolin</creatorcontrib><creatorcontrib>Tang, Haoyi</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Ren, Xiao</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><title>Magnetic Induction Heating-Driven Rapid Cold Start of Ammonia Decomposition for Hydrogen Production</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The advantages of ammonia as a hydrogen carrier have led to proposals for on-site hydrogen production through its decomposition. Rapid cold start of ammonia decomposition is crucial for applications such as ammonia-powered vehicles, but conventional heating methods are challenged by the high decomposition temperature of ammonia. In this study, we successfully achieved the rapid cold start of ammonia decomposition using Co nanoparticle catalysts driven by magnetic induction heating, demonstrating excellent catalytic performance and stability. The magnetic induction heating-driven ammonia decomposition system was integrated with a hydrogen fuel cell, proving its ability to achieve the cold start of ammonia decomposition within 10 s, as demonstrated by comparative experiments using 75% H2-25% N2 from a gas cylinder as the control. This study provides a deeper understanding of hysteresis heating catalysis, promoting the practical use of ammonia as a hydrogen carrier for rapid hydrogen production in the energy industry.</description><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQhS0EoqWwMSOPDKTYTpy4Y9UCrVQEgu7RxbErV4ld7ASp_56UBlhY7nTS997pPYSuKRlTwuj9FmQYJ5ISwekJGlLOSMQpS0_RkBDCokyk8QBdhLDtzoQJeo4G8SQWbJKyIZLPsLGqMRIvbdnKxjiLFwoaYzfR3JtPZfEb7EyJZ64q8XsDvsFO42ldO2sAz5V09c4F8y3UzuPFvvRu08levesNL9GZhiqoq36P0PrxYT1bRKuXp-VsuoqAUdpEIuElaEgYAyWE0LHgAEwyApxpTWJedIPSLJNCFwWkScYhLjkhqeKSk3iEbo-2O-8-WhWavDZBqqoCq1wb8k7LSRecTzr07ohK70LwSuc7b2rw-5yS_NBqfmg171vt8JveuS1qVf7CPzX-vT6otq71tsv5v9cXN6CAoA</recordid><startdate>20241023</startdate><enddate>20241023</enddate><creator>Zhang, Ruiqi</creator><creator>Liu, Xingwu</creator><creator>Song, Ningning</creator><creator>He, Jiahao</creator><creator>Cen, Zeyan</creator><creator>Li, Chengyu</creator><creator>Wang, Maolin</creator><creator>Tang, Haoyi</creator><creator>Liu, Wei</creator><creator>Ren, Xiao</creator><creator>Ma, Ding</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8564-1151</orcidid><orcidid>https://orcid.org/0009-0002-4511-4864</orcidid><orcidid>https://orcid.org/0009-0007-8596-6881</orcidid><orcidid>https://orcid.org/0000-0002-3341-2998</orcidid><orcidid>https://orcid.org/0000-0002-0114-1759</orcidid></search><sort><creationdate>20241023</creationdate><title>Magnetic Induction Heating-Driven Rapid Cold Start of Ammonia Decomposition for Hydrogen Production</title><author>Zhang, Ruiqi ; Liu, Xingwu ; Song, Ningning ; He, Jiahao ; Cen, Zeyan ; Li, Chengyu ; Wang, Maolin ; Tang, Haoyi ; Liu, Wei ; Ren, Xiao ; Ma, Ding</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a211t-845dafa422ae888f385aa2c20a52ff035bf031177c8fbba6475a3d5006e5c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruiqi</creatorcontrib><creatorcontrib>Liu, Xingwu</creatorcontrib><creatorcontrib>Song, Ningning</creatorcontrib><creatorcontrib>He, Jiahao</creatorcontrib><creatorcontrib>Cen, Zeyan</creatorcontrib><creatorcontrib>Li, Chengyu</creatorcontrib><creatorcontrib>Wang, Maolin</creatorcontrib><creatorcontrib>Tang, Haoyi</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Ren, Xiao</creatorcontrib><creatorcontrib>Ma, Ding</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruiqi</au><au>Liu, Xingwu</au><au>Song, Ningning</au><au>He, Jiahao</au><au>Cen, Zeyan</au><au>Li, Chengyu</au><au>Wang, Maolin</au><au>Tang, Haoyi</au><au>Liu, Wei</au><au>Ren, Xiao</au><au>Ma, Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Induction Heating-Driven Rapid Cold Start of Ammonia Decomposition for Hydrogen Production</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-10-23</date><risdate>2024</risdate><volume>146</volume><issue>42</issue><spage>28635</spage><epage>28641</epage><pages>28635-28641</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The advantages of ammonia as a hydrogen carrier have led to proposals for on-site hydrogen production through its decomposition. Rapid cold start of ammonia decomposition is crucial for applications such as ammonia-powered vehicles, but conventional heating methods are challenged by the high decomposition temperature of ammonia. In this study, we successfully achieved the rapid cold start of ammonia decomposition using Co nanoparticle catalysts driven by magnetic induction heating, demonstrating excellent catalytic performance and stability. The magnetic induction heating-driven ammonia decomposition system was integrated with a hydrogen fuel cell, proving its ability to achieve the cold start of ammonia decomposition within 10 s, as demonstrated by comparative experiments using 75% H2-25% N2 from a gas cylinder as the control. This study provides a deeper understanding of hysteresis heating catalysis, promoting the practical use of ammonia as a hydrogen carrier for rapid hydrogen production in the energy industry.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39382962</pmid><doi>10.1021/jacs.4c10851</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8564-1151</orcidid><orcidid>https://orcid.org/0009-0002-4511-4864</orcidid><orcidid>https://orcid.org/0009-0007-8596-6881</orcidid><orcidid>https://orcid.org/0000-0002-3341-2998</orcidid><orcidid>https://orcid.org/0000-0002-0114-1759</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-10, Vol.146 (42), p.28635-28641 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3115093859 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Magnetic Induction Heating-Driven Rapid Cold Start of Ammonia Decomposition for Hydrogen Production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Induction%20Heating-Driven%20Rapid%20Cold%20Start%20of%20Ammonia%20Decomposition%20for%20Hydrogen%20Production&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhang,%20Ruiqi&rft.date=2024-10-23&rft.volume=146&rft.issue=42&rft.spage=28635&rft.epage=28641&rft.pages=28635-28641&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c10851&rft_dat=%3Cproquest_cross%3E3115093859%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a211t-845dafa422ae888f385aa2c20a52ff035bf031177c8fbba6475a3d5006e5c503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115093859&rft_id=info:pmid/39382962&rfr_iscdi=true |