Loading…
Novel Far-Red Fluorescent 1,4-Dihydropyridines for L‑Type Calcium Channel Imaging
Upregulation of L-type calcium channels (LTCCs) is implicated in a range of cardiovascular and neurological disorders. Therefore, the development of toolboxes that unlock fast imaging protocols in live cells is coveted. Herein, we report a library of first-in-class far-red small-molecule-based fluor...
Saved in:
Published in: | Journal of medicinal chemistry 2024-10, Vol.67 (20), p.18038-18052 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Upregulation of L-type calcium channels (LTCCs) is implicated in a range of cardiovascular and neurological disorders. Therefore, the development of toolboxes that unlock fast imaging protocols in live cells is coveted. Herein, we report a library of first-in-class far-red small-molecule-based fluorescent ligands (FluoDiPines), able to target LTCCs. All fluorescent ligands were evaluated in whole-cell patch-clamp and live-cell Ca2+ imaging whereby FluoDiPine 6 was found to be the best candidate for live-cell fluorescence imaging. Low concentration of FluoDiPine 6 (50 nM) and a quick labeling protocol (5 min) are successfully applied to fixed and live cells to image LTCCs with good specificity. |
---|---|
ISSN: | 0022-2623 1520-4804 1520-4804 |
DOI: | 10.1021/acs.jmedchem.4c00565 |