Loading…
Distribution of subgraphs of random regular graphs
We obtain the asymptotic distribution of the number of copies of a fixed subgraph H in a random d‐regular graph, provided H is strictly balanced and d = d(n) is chosen so that the expected number of copies of H tends to infinity (but not too quickly), and the expected number of copies sharing edges...
Saved in:
Published in: | Random structures & algorithms 2008-01, Vol.32 (1), p.38-48 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3389-78d72c0915f1c6c26f6c08495ba0521ec7d66a8e9fe4e4a2488c043c2fbf36e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3389-78d72c0915f1c6c26f6c08495ba0521ec7d66a8e9fe4e4a2488c043c2fbf36e63 |
container_end_page | 48 |
container_issue | 1 |
container_start_page | 38 |
container_title | Random structures & algorithms |
container_volume | 32 |
creator | Gao, Zhicheng Wormald, N.C. |
description | We obtain the asymptotic distribution of the number of copies of a fixed subgraph H in a random d‐regular graph, provided H is strictly balanced and d = d(n) is chosen so that the expected number of copies of H tends to infinity (but not too quickly), and the expected number of copies sharing edges with two other copies is bounded. The proof of asymptotic normality of the distribution uses a method of factorial moments for variables with unbounded means that was recently derived by the authors. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008 |
doi_str_mv | 10.1002/rsa.20189 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_31157781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>31157781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3389-78d72c0915f1c6c26f6c08495ba0521ec7d66a8e9fe4e4a2488c043c2fbf36e63</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A-yQmKR1mM7fixLgYJa8UYsLce1SyBtWrsR9O9JCbBjNTO6587iIHQMuAcYk36IpkcwSLWDOoCVTAkDubvdGUmVpGQfHcT4hjEWlNAOIudFXIcir9dFtUgqn8Q6nwWzfI3bI5jFtJonwc3q0oSkDQ7RnjdldEc_s4ueLy-ehlfp5HZ0PRxMUkupVKmQU0EsVpB5sNwS7rnFkqksNzgj4KyYcm6kU94xxwxhUlrMqCU-95Q7TrvopP27DNWqdnGt50W0rizNwlV11BQgE0JCA562oA1VjMF5vQzF3ISNBqy3VnRjRX9badh-y34Updv8D-qHx8FvI20bjSj3-dcw4V1zQUWmX25GenI_HsNddqaH9AuhUHJF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>31157781</pqid></control><display><type>article</type><title>Distribution of subgraphs of random regular graphs</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Gao, Zhicheng ; Wormald, N.C.</creator><creatorcontrib>Gao, Zhicheng ; Wormald, N.C.</creatorcontrib><description>We obtain the asymptotic distribution of the number of copies of a fixed subgraph H in a random d‐regular graph, provided H is strictly balanced and d = d(n) is chosen so that the expected number of copies of H tends to infinity (but not too quickly), and the expected number of copies sharing edges with two other copies is bounded. The proof of asymptotic normality of the distribution uses a method of factorial moments for variables with unbounded means that was recently derived by the authors. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.20189</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>moments ; normal distribution ; random regular graphs ; subgraphs</subject><ispartof>Random structures & algorithms, 2008-01, Vol.32 (1), p.38-48</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3389-78d72c0915f1c6c26f6c08495ba0521ec7d66a8e9fe4e4a2488c043c2fbf36e63</citedby><cites>FETCH-LOGICAL-c3389-78d72c0915f1c6c26f6c08495ba0521ec7d66a8e9fe4e4a2488c043c2fbf36e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gao, Zhicheng</creatorcontrib><creatorcontrib>Wormald, N.C.</creatorcontrib><title>Distribution of subgraphs of random regular graphs</title><title>Random structures & algorithms</title><addtitle>Random Struct. Alg</addtitle><description>We obtain the asymptotic distribution of the number of copies of a fixed subgraph H in a random d‐regular graph, provided H is strictly balanced and d = d(n) is chosen so that the expected number of copies of H tends to infinity (but not too quickly), and the expected number of copies sharing edges with two other copies is bounded. The proof of asymptotic normality of the distribution uses a method of factorial moments for variables with unbounded means that was recently derived by the authors. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008</description><subject>moments</subject><subject>normal distribution</subject><subject>random regular graphs</subject><subject>subgraphs</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A-yQmKR1mM7fixLgYJa8UYsLce1SyBtWrsR9O9JCbBjNTO6587iIHQMuAcYk36IpkcwSLWDOoCVTAkDubvdGUmVpGQfHcT4hjEWlNAOIudFXIcir9dFtUgqn8Q6nwWzfI3bI5jFtJonwc3q0oSkDQ7RnjdldEc_s4ueLy-ehlfp5HZ0PRxMUkupVKmQU0EsVpB5sNwS7rnFkqksNzgj4KyYcm6kU94xxwxhUlrMqCU-95Q7TrvopP27DNWqdnGt50W0rizNwlV11BQgE0JCA562oA1VjMF5vQzF3ISNBqy3VnRjRX9badh-y34Updv8D-qHx8FvI20bjSj3-dcw4V1zQUWmX25GenI_HsNddqaH9AuhUHJF</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Gao, Zhicheng</creator><creator>Wormald, N.C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200801</creationdate><title>Distribution of subgraphs of random regular graphs</title><author>Gao, Zhicheng ; Wormald, N.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3389-78d72c0915f1c6c26f6c08495ba0521ec7d66a8e9fe4e4a2488c043c2fbf36e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>moments</topic><topic>normal distribution</topic><topic>random regular graphs</topic><topic>subgraphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zhicheng</creatorcontrib><creatorcontrib>Wormald, N.C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Zhicheng</au><au>Wormald, N.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distribution of subgraphs of random regular graphs</atitle><jtitle>Random structures & algorithms</jtitle><addtitle>Random Struct. Alg</addtitle><date>2008-01</date><risdate>2008</risdate><volume>32</volume><issue>1</issue><spage>38</spage><epage>48</epage><pages>38-48</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We obtain the asymptotic distribution of the number of copies of a fixed subgraph H in a random d‐regular graph, provided H is strictly balanced and d = d(n) is chosen so that the expected number of copies of H tends to infinity (but not too quickly), and the expected number of copies sharing edges with two other copies is bounded. The proof of asymptotic normality of the distribution uses a method of factorial moments for variables with unbounded means that was recently derived by the authors. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/rsa.20189</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2008-01, Vol.32 (1), p.38-48 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_miscellaneous_31157781 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | moments normal distribution random regular graphs subgraphs |
title | Distribution of subgraphs of random regular graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distribution%20of%20subgraphs%20of%20random%20regular%20graphs&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Gao,%20Zhicheng&rft.date=2008-01&rft.volume=32&rft.issue=1&rft.spage=38&rft.epage=48&rft.pages=38-48&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.20189&rft_dat=%3Cproquest_cross%3E31157781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3389-78d72c0915f1c6c26f6c08495ba0521ec7d66a8e9fe4e4a2488c043c2fbf36e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=31157781&rft_id=info:pmid/&rfr_iscdi=true |