Loading…

Enhancing refrigerated chicken breasts preservation: Novel composite hydrogels incorporated with antimicrobial peptides, bacterial cellulose, and polyvinyl alcohol

Microbial contamination annually leads to substantial food resource loss. Effective food packaging can mitigate food contamination and waste, yet conventional materials such as plastics often lack bacteriostatic activity. This study aimed to synthesise FengycinA-M3@bacterial cellulose@polyvinyl alco...

Full description

Saved in:
Bibliographic Details
Published in:International journal of biological macromolecules 2024-11, Vol.281 (Pt 4), p.136505, Article 136505
Main Authors: Si, Sha, Huang, Xiaoxia, Wang, Qi, Manickam, Sivakuma, Zhao, Dan, Liu, Yanan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial contamination annually leads to substantial food resource loss. Effective food packaging can mitigate food contamination and waste, yet conventional materials such as plastics often lack bacteriostatic activity. This study aimed to synthesise FengycinA-M3@bacterial cellulose@polyvinyl alcohol composite hydrogels via dual cross-linking with hydrogen and borate bonding, with the goal of enhancing antibacterial properties and prolonging the preservation period of refrigerated chicken breast. The composite hydrogel was subjected to comprehensive characterisation for structural, mechanical, water absorption, slow peptide release, antimicrobial capacity, biocompatibility, and chicken breast freshness preservation. The results showed that the composite hydrogel had a porous network structure and excellent gel elasticity and biocompatibility. It was effective in inhibiting Staphylococcus aureus and Escherichia coli, and prolonged the storage time of frozen chicken breast for up to 12 days. These findings emphasise the potential of hydrogel food packaging to prolong storage periods and its suitability for food industry applications due to ease of manufacture. •Antimicrobial hydrogels based on antimicrobial peptides, bacterial cellulose and polyvinyl alcohol.•AMP@BC@PVA hydrogel had a slow-release property of antimicrobial peptides.•AMP@BC@PVA hydrogel has antimicrobial activity against S. aureus &E. coli.•AMP@BC@PVA hydrogel extended the shelf life of refrigerated chicken breasts.
ISSN:0141-8130
1879-0003
1879-0003
DOI:10.1016/j.ijbiomac.2024.136505