Loading…
PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine
The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigati...
Saved in:
Published in: | Clinical genetics 2024-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c210t-dad768a17df7a74634f947070bf4b643a327a26d37accaf2493c575a9a546e663 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Clinical genetics |
container_volume | |
creator | Alfayyadh, Mohammed M Maksemous, Neven Sutherland, Heidi G Lea, Rodney A Griffiths, Lyn R |
description | The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigation. Notably, the genetic heterogeneity of HM is underscored by the fact that approximately two-thirds of patients lack pathogenic variants in the known causal ion channel genes. In this context, we have developed PathVar, a novel bioinformatics algorithm that harnesses publicly available tools and software for pathogenic variant discovery in NGS data. PathVar integrates a suite of tools, including HaplotypeCaller from the Genome Analysis Toolkit (GATK) for variant calling, Variant Effect Predictor (VEP) and ANNOVAR for variant annotation, and TAPES for assigning the American College of Medical Genetics and Genomics (ACMG) pathogenicity labels. Applying PathVar to whole exome sequencing data from 184 HM patients, we detected 648 variants that are probably pathogenic in multiple patients. Moreover, we have identified several candidate genes for HM, many of which cluster around the Rho GTPases pathway. Future research can leverage PathVar to generate high quality, candidate pathogenic variants, which may enhance our understanding of HM and other complex diseases. |
doi_str_mv | 10.1111/cge.14625 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3115969377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115969377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-dad768a17df7a74634f947070bf4b643a327a26d37accaf2493c575a9a546e663</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EoqVw4AWQj3BIiWPHxtyqCNpKpSDxc402jpMaOUmJE1B5elxa2MtoRp9G2kHonIRj4u9alXpMGI_iAzQkVMogDEN2iIZeZCAJpwN04ty7t1TE8hgNqKSSyUgO0fcTdKs3aG_xBCe965rKOMisxsvpM_a5gbrDCVhr6hJPbNm0pltVeF6trVHQaYeXzae2Hqlzk_sAT3XtU2_xtvoLNg6bGs90ZdZWl0bhB1O2YGp9io4KsE6f7XWEXu_vXpJZsHiczpPJIlARCbsgh1zwGyAiLwQIxikrJBOhCLOCZZxRoJGAiOdUgFJQRExSFYsYJMSMa87pCF3uetdt89Fr16X-R6WthVo3vUspIbHkkgrh0asdqtrGuVYX6bo1FbSblITpdurUT53-Tu3Zi31tn1U6_yf_tqU_T2t5gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115969377</pqid></control><display><type>article</type><title>PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine</title><source>Wiley</source><creator>Alfayyadh, Mohammed M ; Maksemous, Neven ; Sutherland, Heidi G ; Lea, Rodney A ; Griffiths, Lyn R</creator><creatorcontrib>Alfayyadh, Mohammed M ; Maksemous, Neven ; Sutherland, Heidi G ; Lea, Rodney A ; Griffiths, Lyn R</creatorcontrib><description>The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigation. Notably, the genetic heterogeneity of HM is underscored by the fact that approximately two-thirds of patients lack pathogenic variants in the known causal ion channel genes. In this context, we have developed PathVar, a novel bioinformatics algorithm that harnesses publicly available tools and software for pathogenic variant discovery in NGS data. PathVar integrates a suite of tools, including HaplotypeCaller from the Genome Analysis Toolkit (GATK) for variant calling, Variant Effect Predictor (VEP) and ANNOVAR for variant annotation, and TAPES for assigning the American College of Medical Genetics and Genomics (ACMG) pathogenicity labels. Applying PathVar to whole exome sequencing data from 184 HM patients, we detected 648 variants that are probably pathogenic in multiple patients. Moreover, we have identified several candidate genes for HM, many of which cluster around the Rho GTPases pathway. Future research can leverage PathVar to generate high quality, candidate pathogenic variants, which may enhance our understanding of HM and other complex diseases.</description><identifier>ISSN: 0009-9163</identifier><identifier>ISSN: 1399-0004</identifier><identifier>EISSN: 1399-0004</identifier><identifier>DOI: 10.1111/cge.14625</identifier><identifier>PMID: 39394929</identifier><language>eng</language><publisher>Denmark</publisher><ispartof>Clinical genetics, 2024-10</ispartof><rights>2024 The Author(s). Clinical Genetics published by John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-dad768a17df7a74634f947070bf4b643a327a26d37accaf2493c575a9a546e663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39394929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alfayyadh, Mohammed M</creatorcontrib><creatorcontrib>Maksemous, Neven</creatorcontrib><creatorcontrib>Sutherland, Heidi G</creatorcontrib><creatorcontrib>Lea, Rodney A</creatorcontrib><creatorcontrib>Griffiths, Lyn R</creatorcontrib><title>PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine</title><title>Clinical genetics</title><addtitle>Clin Genet</addtitle><description>The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigation. Notably, the genetic heterogeneity of HM is underscored by the fact that approximately two-thirds of patients lack pathogenic variants in the known causal ion channel genes. In this context, we have developed PathVar, a novel bioinformatics algorithm that harnesses publicly available tools and software for pathogenic variant discovery in NGS data. PathVar integrates a suite of tools, including HaplotypeCaller from the Genome Analysis Toolkit (GATK) for variant calling, Variant Effect Predictor (VEP) and ANNOVAR for variant annotation, and TAPES for assigning the American College of Medical Genetics and Genomics (ACMG) pathogenicity labels. Applying PathVar to whole exome sequencing data from 184 HM patients, we detected 648 variants that are probably pathogenic in multiple patients. Moreover, we have identified several candidate genes for HM, many of which cluster around the Rho GTPases pathway. Future research can leverage PathVar to generate high quality, candidate pathogenic variants, which may enhance our understanding of HM and other complex diseases.</description><issn>0009-9163</issn><issn>1399-0004</issn><issn>1399-0004</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EoqVw4AWQj3BIiWPHxtyqCNpKpSDxc402jpMaOUmJE1B5elxa2MtoRp9G2kHonIRj4u9alXpMGI_iAzQkVMogDEN2iIZeZCAJpwN04ty7t1TE8hgNqKSSyUgO0fcTdKs3aG_xBCe965rKOMisxsvpM_a5gbrDCVhr6hJPbNm0pltVeF6trVHQaYeXzae2Hqlzk_sAT3XtU2_xtvoLNg6bGs90ZdZWl0bhB1O2YGp9io4KsE6f7XWEXu_vXpJZsHiczpPJIlARCbsgh1zwGyAiLwQIxikrJBOhCLOCZZxRoJGAiOdUgFJQRExSFYsYJMSMa87pCF3uetdt89Fr16X-R6WthVo3vUspIbHkkgrh0asdqtrGuVYX6bo1FbSblITpdurUT53-Tu3Zi31tn1U6_yf_tqU_T2t5gA</recordid><startdate>20241012</startdate><enddate>20241012</enddate><creator>Alfayyadh, Mohammed M</creator><creator>Maksemous, Neven</creator><creator>Sutherland, Heidi G</creator><creator>Lea, Rodney A</creator><creator>Griffiths, Lyn R</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241012</creationdate><title>PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine</title><author>Alfayyadh, Mohammed M ; Maksemous, Neven ; Sutherland, Heidi G ; Lea, Rodney A ; Griffiths, Lyn R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-dad768a17df7a74634f947070bf4b643a327a26d37accaf2493c575a9a546e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alfayyadh, Mohammed M</creatorcontrib><creatorcontrib>Maksemous, Neven</creatorcontrib><creatorcontrib>Sutherland, Heidi G</creatorcontrib><creatorcontrib>Lea, Rodney A</creatorcontrib><creatorcontrib>Griffiths, Lyn R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alfayyadh, Mohammed M</au><au>Maksemous, Neven</au><au>Sutherland, Heidi G</au><au>Lea, Rodney A</au><au>Griffiths, Lyn R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine</atitle><jtitle>Clinical genetics</jtitle><addtitle>Clin Genet</addtitle><date>2024-10-12</date><risdate>2024</risdate><issn>0009-9163</issn><issn>1399-0004</issn><eissn>1399-0004</eissn><abstract>The exponential growth of next-generation sequencing (NGS) data requires innovative bioinformatics approaches to unravel the genetic underpinnings of diseases. Hemiplegic migraine (HM), a debilitating neurological disorder with a genetic basis, is one such condition that warrants further investigation. Notably, the genetic heterogeneity of HM is underscored by the fact that approximately two-thirds of patients lack pathogenic variants in the known causal ion channel genes. In this context, we have developed PathVar, a novel bioinformatics algorithm that harnesses publicly available tools and software for pathogenic variant discovery in NGS data. PathVar integrates a suite of tools, including HaplotypeCaller from the Genome Analysis Toolkit (GATK) for variant calling, Variant Effect Predictor (VEP) and ANNOVAR for variant annotation, and TAPES for assigning the American College of Medical Genetics and Genomics (ACMG) pathogenicity labels. Applying PathVar to whole exome sequencing data from 184 HM patients, we detected 648 variants that are probably pathogenic in multiple patients. Moreover, we have identified several candidate genes for HM, many of which cluster around the Rho GTPases pathway. Future research can leverage PathVar to generate high quality, candidate pathogenic variants, which may enhance our understanding of HM and other complex diseases.</abstract><cop>Denmark</cop><pmid>39394929</pmid><doi>10.1111/cge.14625</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-9163 |
ispartof | Clinical genetics, 2024-10 |
issn | 0009-9163 1399-0004 1399-0004 |
language | eng |
recordid | cdi_proquest_miscellaneous_3115969377 |
source | Wiley |
title | PathVar: A Customisable NGS Variant Calling Algorithm Implicates Novel Candidate Genes and Pathways in Hemiplegic Migraine |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PathVar:%20A%20Customisable%20NGS%20Variant%20Calling%20Algorithm%20Implicates%20Novel%20Candidate%20Genes%20and%20Pathways%20in%20Hemiplegic%20Migraine&rft.jtitle=Clinical%20genetics&rft.au=Alfayyadh,%20Mohammed%20M&rft.date=2024-10-12&rft.issn=0009-9163&rft.eissn=1399-0004&rft_id=info:doi/10.1111/cge.14625&rft_dat=%3Cproquest_cross%3E3115969377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c210t-dad768a17df7a74634f947070bf4b643a327a26d37accaf2493c575a9a546e663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3115969377&rft_id=info:pmid/39394929&rfr_iscdi=true |