Loading…
Phosphorus pool distributions and adsorption-desorption characteristics of soil aggregates in cut slopes of a permafrost zone in the Qinghai-Tibetan Plateau
Soil phosphorus (P) has attracted considerable attention from researchers because of its role in the restoration and stabilization processes of cut slopes in permafrost regions. However, the soil P pool distributions and adsorption-desorption characteristics in alpine cut slopes remain unclear. In t...
Saved in:
Published in: | The Science of the total environment 2024-12, Vol.954, p.176623, Article 176623 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soil phosphorus (P) has attracted considerable attention from researchers because of its role in the restoration and stabilization processes of cut slopes in permafrost regions. However, the soil P pool distributions and adsorption-desorption characteristics in alpine cut slopes remain unclear. In this context, we examined in this study the P pools in the aggregates of surface cut soil slopes (0‐10 cm) in areas with three permafrost types, including perennially frozen soil (PF), seasonally frozen ground (SFG), and non-frozen soil (NFS) in the Qinghai-Tibet Plateau, China. In addition, we assessed the P adsorption-desorption characteristics and their correlations with the P pools. The results showed the significant effects of the permafrost types on the contents of total P (TP), available P (AP), labile P (LP), moderately labile P (MLP) and stable P (SP). The inorganic P (IP) contents were higher than those of organic P (OP) in the cut soil slopes of the three permafrost types. In addition, H2O-Pi and NaHCO3-Pi accounted for small proportions of IP, while NaHCO3-Po accounted for the smallest proportion of OP. On the other hand, the SP contents in the soil aggregates were generally higher than those of MLP and LP. In fact, the LP contents in the PF, SFG, and NFS were 72.55, 44.68, and 49.42 mg/kg, respectively. The AP contents in the cut soil slopes of the three permafrost types were significantly correlated with the MLP and LP contents. Moreover, the P adsorption-desorption characteristics of the SFG and NFS were closely related to AP and MLP. Compared with the PF and NFS, the SFG exhibited low and high P adsorption and desorption capacities, respectively. The findings of this study provided an important theoretical basis for the restoration of cut slopes in alpine permafrost regions.
[Display omitted]
•Examined the phosphorus pool and adsorption-desorption characteristics in the cut slopes of the permafrost regions•High loss rates of H2O-Pi and NaHCO3-Pi of the alpine cut slopes in the Qinghai-Tibetan Plateau•The significant effects of the perennially frozen soil on the contents of phosphorus pool•The seasonally frozen ground posed a significant risk of phosphorus loss. |
---|---|
ISSN: | 0048-9697 1879-1026 1879-1026 |
DOI: | 10.1016/j.scitotenv.2024.176623 |