Loading…

Modulation of IFN-γ induced macrophage inflammatory responses via indomethacin-loaded NLCs for OA management

[Display omitted] Macrophages are the main cells present in the synovial membrane. They play an important role in the development and progression of osteoarthritis (OA). After the establishment of the disease macrophages mostly adopt a pro-inflammatory secretory phenotype (OA phenotype) further indu...

Full description

Saved in:
Bibliographic Details
Published in:International journal of pharmaceutics 2024-12, Vol.666, p.124823, Article 124823
Main Authors: Martínez-Borrajo, Rebeca, Rouco, Helena, Virzì, Nicola Filippo, Diaz-Rodriguez, Patricia, Landin, Mariana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Macrophages are the main cells present in the synovial membrane. They play an important role in the development and progression of osteoarthritis (OA). After the establishment of the disease macrophages mostly adopt a pro-inflammatory secretory phenotype (OA phenotype) further inducing cartilage degradation. Indomethacin (IND) is a non-steroidal anti-inflammatory drug (NSAID) able to inhibit the synthesis of prostaglandins mediated by both cyclooxygenase isoforms depicting a potent anti-inflammatory capacity. However, the lack of specificity and short half-like of free drugs within the joint cavity limits its utility in controlling inflammation after intra-articular administration. This study aims at developing IND loaded glycosylated nanostructured lipid carriers (NLCs) to selectively target macrophages and promote their reprogramming to an anti-inflammatory phenotype. This approach focused on the local administration of the NLCs, offers a promising therapeutic strategy for treating OA by modulating the inflammatory environment within the joint. NLCs will be designed by combining experimental and in silico docking analyses, and thoroughly characterized to obtain drug delivery systems with high stability and suitable physicochemical properties. The proposed mannose-functionalized systems exhibited adequate particle sizes (≈ 70 nm) and positive surface charges (> 20 mV) to be efficiently retained in the joint cavity. Moreover, the developed NLCs demonstrated effective and specific uptake by OA-like macrophages leading to a significant decrease in the secretion of the pro-inflammatory cytokines IL-6, IL-8 and TNF-α similarly to the free drug. Therefore, these systems effectively reprogrammed OA-associated macrophages to adopt a more regenerative phenotype, offering a promising strategy for managing inflammation in OA.
ISSN:0378-5173
1873-3476
1873-3476
DOI:10.1016/j.ijpharm.2024.124823