Loading…

Actuation Performance and Versatility of Photothermally Driven Organic Crystals

Photomechanical crystals exhibit mechanical motion upon light irradiation and may thus find applications as actuators. Over the last decades, many photomechanical organic crystals have been developed, commonly via photochemical reactions, particularly photoisomerization. However, photochemical cryst...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2025-01, Vol.64 (1), p.e202418570-n/a
Main Authors: Hasebe, Shodai, Hagiwara, Yuki, Asahi, Toru, Koshima, Hideko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2980-297d3e5a8554aa56360a34d7dd1585d8bd7d93d7c86a8607c4f4d8503e21e93a3
container_end_page n/a
container_issue 1
container_start_page e202418570
container_title Angewandte Chemie International Edition
container_volume 64
creator Hasebe, Shodai
Hagiwara, Yuki
Asahi, Toru
Koshima, Hideko
description Photomechanical crystals exhibit mechanical motion upon light irradiation and may thus find applications as actuators. Over the last decades, many photomechanical organic crystals have been developed, commonly via photochemical reactions, particularly photoisomerization. However, photochemical crystal actuation is associated with several drawbacks, including a limited number of available crystals, slow actuation speed (
doi_str_mv 10.1002/anie.202418570
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3116339247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151718841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2980-297d3e5a8554aa56360a34d7dd1585d8bd7d93d7c86a8607c4f4d8503e21e93a3</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipsfV49S8OKlM59Nehxz6mC4HdRryJLUdXTNTFql_70ZmxO8eHpfyC8PLw8AVwgOEIT4TtWlHWCIKRKMwyPQRwyjlHBOjuNOCUm5YKgHzkJYRS8EzE5Bj-QUQoZQH8yGumlVU7o6mVtfOL9WtbaJqk3yZn2IL1XZdIkrkvnSNa5Z2iiqqkvufflp62Tm3-MJOhn5LjSqChfgpIjDXu7nOXh9GL-MntLp7HEyGk5TjXMBU5xzQyxTgjGqFMtIBhWhhhuDmGBGLOKaE8O1yJTIINe0oEYwSCxGNieKnIPbXe7Gu4_Whkauy6BtVanaujZIglBGSI4pj_TmD1251tfxuqgY4kgIiqIa7JT2LgRvC7nx5Vr5TiIot1XLbdXyUHX8cL2PbRdraw78p9sI8h34Kivb_RMnh8-T8W_4NzwQieA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151718841</pqid></control><display><type>article</type><title>Actuation Performance and Versatility of Photothermally Driven Organic Crystals</title><source>Wiley</source><creator>Hasebe, Shodai ; Hagiwara, Yuki ; Asahi, Toru ; Koshima, Hideko</creator><creatorcontrib>Hasebe, Shodai ; Hagiwara, Yuki ; Asahi, Toru ; Koshima, Hideko</creatorcontrib><description>Photomechanical crystals exhibit mechanical motion upon light irradiation and may thus find applications as actuators. Over the last decades, many photomechanical organic crystals have been developed, commonly via photochemical reactions, particularly photoisomerization. However, photochemical crystal actuation is associated with several drawbacks, including a limited number of available crystals, slow actuation speed (&lt;5 Hz), and narrow wavelength range (&lt;550 nm). Such constraints have hindered the widespread use of crystals as actuation materials. In this minireview, we focus on crystal actuation by employing more universal physical phenomena (the photothermal effect and photothermally resonated natural vibration) and quantitatively evaluate actuation performance. Both mechanisms, particularly the latter, outperformed conventional photomechanical crystal activation in terms of both speed (maximum: 1,350 Hz) and the useful wavelength range (ultraviolet to near‐infrared). The oscillation frequencies of the crystals exceeded those of polymers, efficiently filling the gap between soft and hard materials. Both the photothermal effect and natural vibration can actuate any crystal that absorbs light. These two versatile physical actuation mechanisms could expand 40 years of research on photomechanical crystals—which had been based on photochemical reactions—from the realm of chemistry into engineering and lead to their practical applications in actuators and soft robots. In contrast to photochemical reactions, which are the conventional mechanisms used to actuate photomechanical crystals, both the photothermal effect and natural vibration allow all crystals to absorb light at higher speeds over a wider range of light wavelengths, from ultraviolet to near‐infrared. These two novel mechanisms could advance the research on photomechanical crystals from the field of fundamental chemistry to engineering and applied research.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202418570</identifier><identifier>PMID: 39400511</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actuation ; actuation performance ; Actuators ; Atmospheric chemistry ; Crystals ; Hard materials ; Irradiation ; Light effects ; Light irradiation ; natural vibration ; Near infrared radiation ; organic crystal actuators ; Organic crystals ; Performance evaluation ; Photochemical reactions ; Photochemicals ; photomechanical crystals ; photothermal effect ; Polymers ; Vibration</subject><ispartof>Angewandte Chemie International Edition, 2025-01, Vol.64 (1), p.e202418570-n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><rights>2025 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2980-297d3e5a8554aa56360a34d7dd1585d8bd7d93d7c86a8607c4f4d8503e21e93a3</cites><orcidid>0000-0002-3489-6357 ; 0000-0002-0061-5545 ; 0000-0002-2537-5453 ; 0000-0003-4925-8259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39400511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasebe, Shodai</creatorcontrib><creatorcontrib>Hagiwara, Yuki</creatorcontrib><creatorcontrib>Asahi, Toru</creatorcontrib><creatorcontrib>Koshima, Hideko</creatorcontrib><title>Actuation Performance and Versatility of Photothermally Driven Organic Crystals</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Photomechanical crystals exhibit mechanical motion upon light irradiation and may thus find applications as actuators. Over the last decades, many photomechanical organic crystals have been developed, commonly via photochemical reactions, particularly photoisomerization. However, photochemical crystal actuation is associated with several drawbacks, including a limited number of available crystals, slow actuation speed (&lt;5 Hz), and narrow wavelength range (&lt;550 nm). Such constraints have hindered the widespread use of crystals as actuation materials. In this minireview, we focus on crystal actuation by employing more universal physical phenomena (the photothermal effect and photothermally resonated natural vibration) and quantitatively evaluate actuation performance. Both mechanisms, particularly the latter, outperformed conventional photomechanical crystal activation in terms of both speed (maximum: 1,350 Hz) and the useful wavelength range (ultraviolet to near‐infrared). The oscillation frequencies of the crystals exceeded those of polymers, efficiently filling the gap between soft and hard materials. Both the photothermal effect and natural vibration can actuate any crystal that absorbs light. These two versatile physical actuation mechanisms could expand 40 years of research on photomechanical crystals—which had been based on photochemical reactions—from the realm of chemistry into engineering and lead to their practical applications in actuators and soft robots. In contrast to photochemical reactions, which are the conventional mechanisms used to actuate photomechanical crystals, both the photothermal effect and natural vibration allow all crystals to absorb light at higher speeds over a wider range of light wavelengths, from ultraviolet to near‐infrared. These two novel mechanisms could advance the research on photomechanical crystals from the field of fundamental chemistry to engineering and applied research.</description><subject>Actuation</subject><subject>actuation performance</subject><subject>Actuators</subject><subject>Atmospheric chemistry</subject><subject>Crystals</subject><subject>Hard materials</subject><subject>Irradiation</subject><subject>Light effects</subject><subject>Light irradiation</subject><subject>natural vibration</subject><subject>Near infrared radiation</subject><subject>organic crystal actuators</subject><subject>Organic crystals</subject><subject>Performance evaluation</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>photomechanical crystals</subject><subject>photothermal effect</subject><subject>Polymers</subject><subject>Vibration</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgipsfV49S8OKlM59Nehxz6mC4HdRryJLUdXTNTFql_70ZmxO8eHpfyC8PLw8AVwgOEIT4TtWlHWCIKRKMwyPQRwyjlHBOjuNOCUm5YKgHzkJYRS8EzE5Bj-QUQoZQH8yGumlVU7o6mVtfOL9WtbaJqk3yZn2IL1XZdIkrkvnSNa5Z2iiqqkvufflp62Tm3-MJOhn5LjSqChfgpIjDXu7nOXh9GL-MntLp7HEyGk5TjXMBU5xzQyxTgjGqFMtIBhWhhhuDmGBGLOKaE8O1yJTIINe0oEYwSCxGNieKnIPbXe7Gu4_Whkauy6BtVanaujZIglBGSI4pj_TmD1251tfxuqgY4kgIiqIa7JT2LgRvC7nx5Vr5TiIot1XLbdXyUHX8cL2PbRdraw78p9sI8h34Kivb_RMnh8-T8W_4NzwQieA</recordid><startdate>20250102</startdate><enddate>20250102</enddate><creator>Hasebe, Shodai</creator><creator>Hagiwara, Yuki</creator><creator>Asahi, Toru</creator><creator>Koshima, Hideko</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3489-6357</orcidid><orcidid>https://orcid.org/0000-0002-0061-5545</orcidid><orcidid>https://orcid.org/0000-0002-2537-5453</orcidid><orcidid>https://orcid.org/0000-0003-4925-8259</orcidid></search><sort><creationdate>20250102</creationdate><title>Actuation Performance and Versatility of Photothermally Driven Organic Crystals</title><author>Hasebe, Shodai ; Hagiwara, Yuki ; Asahi, Toru ; Koshima, Hideko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2980-297d3e5a8554aa56360a34d7dd1585d8bd7d93d7c86a8607c4f4d8503e21e93a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Actuation</topic><topic>actuation performance</topic><topic>Actuators</topic><topic>Atmospheric chemistry</topic><topic>Crystals</topic><topic>Hard materials</topic><topic>Irradiation</topic><topic>Light effects</topic><topic>Light irradiation</topic><topic>natural vibration</topic><topic>Near infrared radiation</topic><topic>organic crystal actuators</topic><topic>Organic crystals</topic><topic>Performance evaluation</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>photomechanical crystals</topic><topic>photothermal effect</topic><topic>Polymers</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasebe, Shodai</creatorcontrib><creatorcontrib>Hagiwara, Yuki</creatorcontrib><creatorcontrib>Asahi, Toru</creatorcontrib><creatorcontrib>Koshima, Hideko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasebe, Shodai</au><au>Hagiwara, Yuki</au><au>Asahi, Toru</au><au>Koshima, Hideko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actuation Performance and Versatility of Photothermally Driven Organic Crystals</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2025-01-02</date><risdate>2025</risdate><volume>64</volume><issue>1</issue><spage>e202418570</spage><epage>n/a</epage><pages>e202418570-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Photomechanical crystals exhibit mechanical motion upon light irradiation and may thus find applications as actuators. Over the last decades, many photomechanical organic crystals have been developed, commonly via photochemical reactions, particularly photoisomerization. However, photochemical crystal actuation is associated with several drawbacks, including a limited number of available crystals, slow actuation speed (&lt;5 Hz), and narrow wavelength range (&lt;550 nm). Such constraints have hindered the widespread use of crystals as actuation materials. In this minireview, we focus on crystal actuation by employing more universal physical phenomena (the photothermal effect and photothermally resonated natural vibration) and quantitatively evaluate actuation performance. Both mechanisms, particularly the latter, outperformed conventional photomechanical crystal activation in terms of both speed (maximum: 1,350 Hz) and the useful wavelength range (ultraviolet to near‐infrared). The oscillation frequencies of the crystals exceeded those of polymers, efficiently filling the gap between soft and hard materials. Both the photothermal effect and natural vibration can actuate any crystal that absorbs light. These two versatile physical actuation mechanisms could expand 40 years of research on photomechanical crystals—which had been based on photochemical reactions—from the realm of chemistry into engineering and lead to their practical applications in actuators and soft robots. In contrast to photochemical reactions, which are the conventional mechanisms used to actuate photomechanical crystals, both the photothermal effect and natural vibration allow all crystals to absorb light at higher speeds over a wider range of light wavelengths, from ultraviolet to near‐infrared. These two novel mechanisms could advance the research on photomechanical crystals from the field of fundamental chemistry to engineering and applied research.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39400511</pmid><doi>10.1002/anie.202418570</doi><tpages>12</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-3489-6357</orcidid><orcidid>https://orcid.org/0000-0002-0061-5545</orcidid><orcidid>https://orcid.org/0000-0002-2537-5453</orcidid><orcidid>https://orcid.org/0000-0003-4925-8259</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2025-01, Vol.64 (1), p.e202418570-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_3116339247
source Wiley
subjects Actuation
actuation performance
Actuators
Atmospheric chemistry
Crystals
Hard materials
Irradiation
Light effects
Light irradiation
natural vibration
Near infrared radiation
organic crystal actuators
Organic crystals
Performance evaluation
Photochemical reactions
Photochemicals
photomechanical crystals
photothermal effect
Polymers
Vibration
title Actuation Performance and Versatility of Photothermally Driven Organic Crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actuation%20Performance%20and%20Versatility%20of%20Photothermally%20Driven%20Organic%20Crystals&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Hasebe,%20Shodai&rft.date=2025-01-02&rft.volume=64&rft.issue=1&rft.spage=e202418570&rft.epage=n/a&rft.pages=e202418570-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202418570&rft_dat=%3Cproquest_cross%3E3151718841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2980-297d3e5a8554aa56360a34d7dd1585d8bd7d93d7c86a8607c4f4d8503e21e93a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151718841&rft_id=info:pmid/39400511&rfr_iscdi=true