Loading…

Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations

This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and af...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular graphics & modelling 2024-12, Vol.133, p.108884, Article 108884
Main Authors: Pamonsupornwichit, Thanathat, Kodchakorn, Kanchanok, Udomwong, Piyachat, Sornsuwan, Kanokporn, Weechan, Anuwat, Juntit, On-anong, Nimmanpipug, Piyarat, Tayapiwatana, Chatchai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c237t-2f62940f6fccee3f4326e1cb8b2aa40686e83c20d49d078bb4d134c2754cfd983
container_end_page
container_issue
container_start_page 108884
container_title Journal of molecular graphics & modelling
container_volume 133
creator Pamonsupornwichit, Thanathat
Kodchakorn, Kanchanok
Udomwong, Piyachat
Sornsuwan, Kanokporn
Weechan, Anuwat
Juntit, On-anong
Nimmanpipug, Piyarat
Tayapiwatana, Chatchai
description This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9L1:N32Y exhibited a 1.66-fold increase in binding affinity, with a KD of 1.75 × 10−8 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering. [Display omitted] •mCSM-AB2 excels at predicting affinity loss but struggles with affinity gains.•Combining mCSM-AB2 with MD simulations enhances predictive power.•Entropy explains the discrepancy of MD simulation and mCSM-AB2.•Machine learning should consider complex stability and structure flexibility.
doi_str_mv 10.1016/j.jmgm.2024.108884
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3117072757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1093326324001840</els_id><sourcerecordid>3117072757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-2f62940f6fccee3f4326e1cb8b2aa40686e83c20d49d078bb4d134c2754cfd983</originalsourceid><addsrcrecordid>eNp9kL1uFDEURkeIiISEF6BALmlm8V_GHkSzWRJASpQiUFse-3rj1dhe7JlIS8uL49EGSipbV-f7dO9pmrcErwgm3Yfdahe2YUUx5XUgpeQvmjMiBWs55exl_eOetYx27LR5XcoOY8wkFq-aU9ZzfNlLetb8vo5bHwGyj1uknfPRTweUHHqcg47-F1j0YG6e0KTzFqYF2nwmXCAdJz8ke_iI1sikMNQOi_R-n5M2j0s-bB7u2vUVraRFIY1g5lFnZA9RB28KKj7UweRTLBfNidNjgTfP73nz4-b6--Zre3v_5dtmfdsaysTUUtfRurfrnDEAzPF6GRAzyIFqzXEnO5DMUGx5b7GQw8AtYdxQccmNs71k5837Y2_d8ucMZVLBFwPjqCOkuShGiMCi8qKi9IianErJ4NQ--6DzQRGsFvlqpxb5apGvjvJr6N1z_zwEsP8if21X4NMRgHrlk4esivEQDVifwUzKJv-__j9etJYl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117072757</pqid></control><display><type>article</type><title>Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations</title><source>ScienceDirect Journals</source><creator>Pamonsupornwichit, Thanathat ; Kodchakorn, Kanchanok ; Udomwong, Piyachat ; Sornsuwan, Kanokporn ; Weechan, Anuwat ; Juntit, On-anong ; Nimmanpipug, Piyarat ; Tayapiwatana, Chatchai</creator><creatorcontrib>Pamonsupornwichit, Thanathat ; Kodchakorn, Kanchanok ; Udomwong, Piyachat ; Sornsuwan, Kanokporn ; Weechan, Anuwat ; Juntit, On-anong ; Nimmanpipug, Piyarat ; Tayapiwatana, Chatchai</creatorcontrib><description>This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9L1:N32Y exhibited a 1.66-fold increase in binding affinity, with a KD of 1.75 × 10−8 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering. [Display omitted] •mCSM-AB2 excels at predicting affinity loss but struggles with affinity gains.•Combining mCSM-AB2 with MD simulations enhances predictive power.•Entropy explains the discrepancy of MD simulation and mCSM-AB2.•Machine learning should consider complex stability and structure flexibility.</description><identifier>ISSN: 1093-3263</identifier><identifier>ISSN: 1873-4243</identifier><identifier>EISSN: 1873-4243</identifier><identifier>DOI: 10.1016/j.jmgm.2024.108884</identifier><identifier>PMID: 39405982</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Antibody Affinity ; Basigin - chemistry ; Basigin - immunology ; Binding affinity ; CD147 ; Humans ; Machine Learning ; MD simulations ; Molecular Dynamics Simulation ; Mutation ; Protein Binding ; Protein Engineering - methods ; ScFv ; Single-Chain Antibodies - chemistry ; Single-Chain Antibodies - genetics ; Single-Chain Antibodies - immunology ; Thermodynamics</subject><ispartof>Journal of molecular graphics &amp; modelling, 2024-12, Vol.133, p.108884, Article 108884</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-2f62940f6fccee3f4326e1cb8b2aa40686e83c20d49d078bb4d134c2754cfd983</cites><orcidid>0000-0001-6364-504X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39405982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pamonsupornwichit, Thanathat</creatorcontrib><creatorcontrib>Kodchakorn, Kanchanok</creatorcontrib><creatorcontrib>Udomwong, Piyachat</creatorcontrib><creatorcontrib>Sornsuwan, Kanokporn</creatorcontrib><creatorcontrib>Weechan, Anuwat</creatorcontrib><creatorcontrib>Juntit, On-anong</creatorcontrib><creatorcontrib>Nimmanpipug, Piyarat</creatorcontrib><creatorcontrib>Tayapiwatana, Chatchai</creatorcontrib><title>Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations</title><title>Journal of molecular graphics &amp; modelling</title><addtitle>J Mol Graph Model</addtitle><description>This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9L1:N32Y exhibited a 1.66-fold increase in binding affinity, with a KD of 1.75 × 10−8 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering. [Display omitted] •mCSM-AB2 excels at predicting affinity loss but struggles with affinity gains.•Combining mCSM-AB2 with MD simulations enhances predictive power.•Entropy explains the discrepancy of MD simulation and mCSM-AB2.•Machine learning should consider complex stability and structure flexibility.</description><subject>Antibody Affinity</subject><subject>Basigin - chemistry</subject><subject>Basigin - immunology</subject><subject>Binding affinity</subject><subject>CD147</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>MD simulations</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Engineering - methods</subject><subject>ScFv</subject><subject>Single-Chain Antibodies - chemistry</subject><subject>Single-Chain Antibodies - genetics</subject><subject>Single-Chain Antibodies - immunology</subject><subject>Thermodynamics</subject><issn>1093-3263</issn><issn>1873-4243</issn><issn>1873-4243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kL1uFDEURkeIiISEF6BALmlm8V_GHkSzWRJASpQiUFse-3rj1dhe7JlIS8uL49EGSipbV-f7dO9pmrcErwgm3Yfdahe2YUUx5XUgpeQvmjMiBWs55exl_eOetYx27LR5XcoOY8wkFq-aU9ZzfNlLetb8vo5bHwGyj1uknfPRTweUHHqcg47-F1j0YG6e0KTzFqYF2nwmXCAdJz8ke_iI1sikMNQOi_R-n5M2j0s-bB7u2vUVraRFIY1g5lFnZA9RB28KKj7UweRTLBfNidNjgTfP73nz4-b6--Zre3v_5dtmfdsaysTUUtfRurfrnDEAzPF6GRAzyIFqzXEnO5DMUGx5b7GQw8AtYdxQccmNs71k5837Y2_d8ucMZVLBFwPjqCOkuShGiMCi8qKi9IianErJ4NQ--6DzQRGsFvlqpxb5apGvjvJr6N1z_zwEsP8if21X4NMRgHrlk4esivEQDVifwUzKJv-__j9etJYl</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Pamonsupornwichit, Thanathat</creator><creator>Kodchakorn, Kanchanok</creator><creator>Udomwong, Piyachat</creator><creator>Sornsuwan, Kanokporn</creator><creator>Weechan, Anuwat</creator><creator>Juntit, On-anong</creator><creator>Nimmanpipug, Piyarat</creator><creator>Tayapiwatana, Chatchai</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6364-504X</orcidid></search><sort><creationdate>202412</creationdate><title>Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations</title><author>Pamonsupornwichit, Thanathat ; Kodchakorn, Kanchanok ; Udomwong, Piyachat ; Sornsuwan, Kanokporn ; Weechan, Anuwat ; Juntit, On-anong ; Nimmanpipug, Piyarat ; Tayapiwatana, Chatchai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-2f62940f6fccee3f4326e1cb8b2aa40686e83c20d49d078bb4d134c2754cfd983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antibody Affinity</topic><topic>Basigin - chemistry</topic><topic>Basigin - immunology</topic><topic>Binding affinity</topic><topic>CD147</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>MD simulations</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Engineering - methods</topic><topic>ScFv</topic><topic>Single-Chain Antibodies - chemistry</topic><topic>Single-Chain Antibodies - genetics</topic><topic>Single-Chain Antibodies - immunology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pamonsupornwichit, Thanathat</creatorcontrib><creatorcontrib>Kodchakorn, Kanchanok</creatorcontrib><creatorcontrib>Udomwong, Piyachat</creatorcontrib><creatorcontrib>Sornsuwan, Kanokporn</creatorcontrib><creatorcontrib>Weechan, Anuwat</creatorcontrib><creatorcontrib>Juntit, On-anong</creatorcontrib><creatorcontrib>Nimmanpipug, Piyarat</creatorcontrib><creatorcontrib>Tayapiwatana, Chatchai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular graphics &amp; modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pamonsupornwichit, Thanathat</au><au>Kodchakorn, Kanchanok</au><au>Udomwong, Piyachat</au><au>Sornsuwan, Kanokporn</au><au>Weechan, Anuwat</au><au>Juntit, On-anong</au><au>Nimmanpipug, Piyarat</au><au>Tayapiwatana, Chatchai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations</atitle><jtitle>Journal of molecular graphics &amp; modelling</jtitle><addtitle>J Mol Graph Model</addtitle><date>2024-12</date><risdate>2024</risdate><volume>133</volume><spage>108884</spage><pages>108884-</pages><artnum>108884</artnum><issn>1093-3263</issn><issn>1873-4243</issn><eissn>1873-4243</eissn><abstract>This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9L1:N32Y exhibited a 1.66-fold increase in binding affinity, with a KD of 1.75 × 10−8 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering. [Display omitted] •mCSM-AB2 excels at predicting affinity loss but struggles with affinity gains.•Combining mCSM-AB2 with MD simulations enhances predictive power.•Entropy explains the discrepancy of MD simulation and mCSM-AB2.•Machine learning should consider complex stability and structure flexibility.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39405982</pmid><doi>10.1016/j.jmgm.2024.108884</doi><orcidid>https://orcid.org/0000-0001-6364-504X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1093-3263
ispartof Journal of molecular graphics & modelling, 2024-12, Vol.133, p.108884, Article 108884
issn 1093-3263
1873-4243
1873-4243
language eng
recordid cdi_proquest_miscellaneous_3117072757
source ScienceDirect Journals
subjects Antibody Affinity
Basigin - chemistry
Basigin - immunology
Binding affinity
CD147
Humans
Machine Learning
MD simulations
Molecular Dynamics Simulation
Mutation
Protein Binding
Protein Engineering - methods
ScFv
Single-Chain Antibodies - chemistry
Single-Chain Antibodies - genetics
Single-Chain Antibodies - immunology
Thermodynamics
title Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20affinity%20of%20humanized%20ScFv%20targeting%20CD147%20antibody:%20A%20combined%20approach%20of%20mCSM-AB2%20and%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20molecular%20graphics%20&%20modelling&rft.au=Pamonsupornwichit,%20Thanathat&rft.date=2024-12&rft.volume=133&rft.spage=108884&rft.pages=108884-&rft.artnum=108884&rft.issn=1093-3263&rft.eissn=1873-4243&rft_id=info:doi/10.1016/j.jmgm.2024.108884&rft_dat=%3Cproquest_cross%3E3117072757%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-2f62940f6fccee3f4326e1cb8b2aa40686e83c20d49d078bb4d134c2754cfd983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117072757&rft_id=info:pmid/39405982&rfr_iscdi=true