Loading…

Extracting Thermodynamic Properties of Carbyne from Tip-Enhanced Raman Scattering Images

The measurement of thermodynamic properties for nanosystems is essential to comprehend the inherent characteristics of nanomaterials. Traditional spectroscopy measurements, such as Raman or ultraviolet–visible spectroscopies, are limited to offering insights near the Γ point in the Brillouin zone an...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2024-10, Vol.15 (41), p.10321-10328
Main Authors: Yao, Lun, Yu, Hai-Zhen, Xie, Zhen, Duan, Sai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The measurement of thermodynamic properties for nanosystems is essential to comprehend the inherent characteristics of nanomaterials. Traditional spectroscopy measurements, such as Raman or ultraviolet–visible spectroscopies, are limited to offering insights near the Γ point in the Brillouin zone and thus cannot precisely determine the system’s thermodynamic properties, for example, heat capacity. Utilizing the intrinsic broad momentum distribution in highly confined plasmonic fields, here we take sp-hybridized carbyne as a proof-of-the-principle example to show that ultrahigh-resolution tip-enhanced Raman scattering (TERS) images have the ability to access all k-points in the phonon Brillouin zone of one-dimensional nanosystems, allowing the comprehensive determination of vibrational features and heat capacity for finite carbon chains. Comparing phonon dispersion spectra and heat capacities under different boundary conditions, i.e., linear carbon chains and cyclic carbon molecules, we find that the heat capacities of linear structures converge more rapidly than the counterparts of cyclic structures to the benchmark of ideal carbyne. We also study the effects of different terminal groups in linear structures as well as the aromaticity in cyclic structures on heat capacity. This study provides a practical method for characterizing the thermodynamic properties of nanosystems, demonstrating the potential applications of TERS imaging in nanomaterial science.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.4c02274