Loading…

Identification of FGG as a Biomarker in Early Gastric Cancer via Tissue Proteomics and Clinical Verification

Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of proteome research 2024-11, Vol.23 (11), p.5122-5130
Main Authors: Chen, Wujie, Ye, Qihua, Zhang, Biying, Ma, Zhenhua, Tu, Hanxiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins that overlapped among the upregulated differentially expressed proteins (DEPs) in early gastric cancer (EGC) versus progressive gastric cancer (PGC), upregulated DEPs in EGC versus nongastric cancer (NGC), and nonsignificant proteins in EGC versus NGC. These DEPs were involved primarily in the neutrophil-related immune response. Network analysis of proteins and pathways revealed that fibrinogen α (FGA), β (FGB), and γ (FGG) are candidates for distinguishing EGC. Furthermore, parallel reaction monitoring (PRM), immunohistochemistry (IHC), and Western blot (WB) assays of clinical samples confirmed that, compared with that in PGC and NGC, only FGG was uniquely and significantly upregulated in the gastric mucosa of EGC. Our results demonstrated that FGG in the gastric mucosa could be a novel biomarker to diagnose EGC patients via endoscopy.
ISSN:1535-3893
1535-3907
1535-3907
DOI:10.1021/acs.jproteome.4c00624