Loading…

Efficient hydrogen production from food waste leachate using single-chamber microbial electrolysis cell

The aim of this study was to develop an efficient strategy for enhancing H2 production in the single-chamber microbial electrolysis cell (MEC) using food waste leachate as a substrate. Different pH (8.5, 9.5, 10.5, and 11.2), applied voltage (0.8, 1.2, 1.5, 1.8, 2.0, 2.2, 2.3, and 2.4 V) and negativ...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2024-12, Vol.263 (Pt 2), p.120159, Article 120159
Main Authors: Ma, Shuyue, Zhang, Yifan, Tu, Lingli, Li, Xin, Chen, Xindi, Lin, Songwei, Luo, Haiping, Zhan, Xinmin, Liu, Guangli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to develop an efficient strategy for enhancing H2 production in the single-chamber microbial electrolysis cell (MEC) using food waste leachate as a substrate. Different pH (8.5, 9.5, 10.5, and 11.2), applied voltage (0.8, 1.2, 1.5, 1.8, 2.0, 2.2, 2.3, and 2.4 V) and negative pressure control (−50 kPa) were tested in the single-chamber MEC. Suitable pH adjustment could greatly promote electricity generation and H2 production rather than negative pressure control. Under pH of 11.5 and 2.4 V, the maximum current density reached 121.9 ± 10.9 A/m³ with an average H2 concentration of 91.9 ± 3.2% in a 1.2-L single-chamber MEC within 30 continuous cycles of operation (∼607 h), which was constructed with carbon brushes as the anode and stainless steel brushes as the cathode. The maximum H2 production rate reached 853.2 ± 70.3 L/m³•d with an H2 yield of 26.3 mmol•H2/g•COD. The COD removal of 68.3 ± 6.8% and three-dimensional excitation-emission matrix spectra of the effluent in the MEC within 21 ± 3h indicated efficient organics degradation in the leachate. Our results should provide a promising way to enhance the H2 production of MEC during leachate treatment. [Display omitted] •Strategies of enhancing H2 production were tested in MEC with food waste leachate.•Single-chamber 1.2-L MEC was composed of carbon and stainless stain brushes.•PH of 11.2 and applied voltage of 2.4V were determined for enhancing H2 production.•H2 concentration of 91.9 ± 3.2% remained stable within 30 cycles (∼607 h).•H2 production rate and yield was 853.2 ± 70.3 L/m³.•d.
ISSN:0013-9351
1096-0953
1096-0953
DOI:10.1016/j.envres.2024.120159