Loading…

Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High‐Energy Lithium Storage

The stable electrode/electrolyte interface and fast electron/ion transport channel play important roles in boosting the rate performance and cycling life of lithium‐ion batteries. Herein, a porous silicon/carbon composite (pSi@PC@MC) is presented by integrating hollow porous silicon (pSi) with pitch...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-12, Vol.20 (52), p.e2407560-n/a
Main Authors: Cheng, Zhongling, Lin, Huanhao, Liu, Yueming, Li, Jihao, Jiang, Hao, Zhang, Haijiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2980-beab46471a582645c07b6775397183110e5ce47a433c9a4106b1a71b4834c30e3
container_end_page n/a
container_issue 52
container_start_page e2407560
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Cheng, Zhongling
Lin, Huanhao
Liu, Yueming
Li, Jihao
Jiang, Hao
Zhang, Haijiao
description The stable electrode/electrolyte interface and fast electron/ion transport channel play important roles in boosting the rate performance and cycling life of lithium‐ion batteries. Herein, a porous silicon/carbon composite (pSi@PC@MC) is presented by integrating hollow porous silicon (pSi) with pitch‐derived carbon (PC) and dopamine‐derived mesoporous carbon (MC), employing microporous zeolite as the silicon source. The finite element simulation first reveals the stress release effect of rigid and flexible carbon encapsulation on the hollow Si anode for lithium‐ion storage. In situ and ex situ characterization results further elucidate that hybrid sp2/sp3 carbon coating greatly enhances the liquid/solid interface stability and the compatibility with the electrolyte, as well as facilitates the electron/ion transmission dynamics, achieving a uniform, stable, and LiF‐rich SEI film, ultimately improving the lithium storage performance. As expected, the as‐designed pSi@PC@MC anode delivers an impressive rate capability (756.6 mAh g−1 at 6 A g−1) and excellent cycling stability with a capacity of 1650 mAh g−1 after 300 cycles at 0.2 A g−1. Meanwhile, the pSi@PC@MC//NCM811 full‐cell exhibits an outstanding cycling stability (75.8% capacity retention after 100 cycles). This study highlights the significance of rational porous design and effective hybrid carbon encapsulation for the development of fast‐charging Si/carbon anodes. A hollow porous silicon/carbon composite with heterogeneous sp2/sp3 carbon coating is designed via finite element simulations. The rigid and flexible carbon encapsulation enhances the electron/ion transport kinetics and strengthens the interface stability. Meanwhile, hollow porous Si core further buffers the large volume expansion and stress release. As expected, the optimized anode shows an outstanding rate performance for lithium storage.
doi_str_mv 10.1002/smll.202407560
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3118833868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118833868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2980-beab46471a582645c07b6775397183110e5ce47a433c9a4106b1a71b4834c30e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhiMEoqVw5YgsceGyix07tnOstltaKQjEFq7R2OtkXTn2YieC3HgEzjweT4LLlkXigi9jS99849FfFM8JXhKMy9dpcG5Z4pJhUXH8oDglnNAFl2X98Hgn-KR4ktItxpSUTDwuTmjNSpnPafFj7UE563s07gy6ieDTPsQRXcweBqsTAr9F1340sQNtwaHNCMo6O84odOh9iGFKaGPRuQ9bgz5ZQB9sb7e_2y6d-WqVM2gFUQWP1l7DPk0ORptfXYjoyva7n9--r72J_YwaO-7sNOQRIUJvnhaPOnDJPLuvZ8XHy_XN6mrRvHtzvTpvFrqsJV4oA4pxJghUsuSs0lgoLkRFa0EkJQSbShsmgFGqa2AEc0VAEMUkZZpiQ8-KVwfvPobPk0ljO9ikjXPgTd6uzQ4pKZVcZvTlP-htmKLPv8sUq5ngNasztTxQOoaUounafbQDxLkluL1Lrb1LrT2mlhte3GsnNZjtEf8TUwbqA_DFOjP_R9du3jbNX_kvR1Kk7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149476949</pqid></control><display><type>article</type><title>Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High‐Energy Lithium Storage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cheng, Zhongling ; Lin, Huanhao ; Liu, Yueming ; Li, Jihao ; Jiang, Hao ; Zhang, Haijiao</creator><creatorcontrib>Cheng, Zhongling ; Lin, Huanhao ; Liu, Yueming ; Li, Jihao ; Jiang, Hao ; Zhang, Haijiao</creatorcontrib><description>The stable electrode/electrolyte interface and fast electron/ion transport channel play important roles in boosting the rate performance and cycling life of lithium‐ion batteries. Herein, a porous silicon/carbon composite (pSi@PC@MC) is presented by integrating hollow porous silicon (pSi) with pitch‐derived carbon (PC) and dopamine‐derived mesoporous carbon (MC), employing microporous zeolite as the silicon source. The finite element simulation first reveals the stress release effect of rigid and flexible carbon encapsulation on the hollow Si anode for lithium‐ion storage. In situ and ex situ characterization results further elucidate that hybrid sp2/sp3 carbon coating greatly enhances the liquid/solid interface stability and the compatibility with the electrolyte, as well as facilitates the electron/ion transmission dynamics, achieving a uniform, stable, and LiF‐rich SEI film, ultimately improving the lithium storage performance. As expected, the as‐designed pSi@PC@MC anode delivers an impressive rate capability (756.6 mAh g−1 at 6 A g−1) and excellent cycling stability with a capacity of 1650 mAh g−1 after 300 cycles at 0.2 A g−1. Meanwhile, the pSi@PC@MC//NCM811 full‐cell exhibits an outstanding cycling stability (75.8% capacity retention after 100 cycles). This study highlights the significance of rational porous design and effective hybrid carbon encapsulation for the development of fast‐charging Si/carbon anodes. A hollow porous silicon/carbon composite with heterogeneous sp2/sp3 carbon coating is designed via finite element simulations. The rigid and flexible carbon encapsulation enhances the electron/ion transport kinetics and strengthens the interface stability. Meanwhile, hollow porous Si core further buffers the large volume expansion and stress release. As expected, the optimized anode shows an outstanding rate performance for lithium storage.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202407560</identifier><identifier>PMID: 39428888</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon ; Cycle ratio ; Dopamine ; Electrolytes ; Encapsulation ; hybrid carbon encapsulation ; Interface stability ; Ion storage ; Ion transport ; Liquid-solid interfaces ; Lithium ; Lithium-ion batteries ; porous Si ; Porous silicon ; stable SEI film ; stress‐buffering</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (52), p.e2407560-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2980-beab46471a582645c07b6775397183110e5ce47a433c9a4106b1a71b4834c30e3</cites><orcidid>0000-0003-2958-2967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39428888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Zhongling</creatorcontrib><creatorcontrib>Lin, Huanhao</creatorcontrib><creatorcontrib>Liu, Yueming</creatorcontrib><creatorcontrib>Li, Jihao</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhang, Haijiao</creatorcontrib><title>Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High‐Energy Lithium Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The stable electrode/electrolyte interface and fast electron/ion transport channel play important roles in boosting the rate performance and cycling life of lithium‐ion batteries. Herein, a porous silicon/carbon composite (pSi@PC@MC) is presented by integrating hollow porous silicon (pSi) with pitch‐derived carbon (PC) and dopamine‐derived mesoporous carbon (MC), employing microporous zeolite as the silicon source. The finite element simulation first reveals the stress release effect of rigid and flexible carbon encapsulation on the hollow Si anode for lithium‐ion storage. In situ and ex situ characterization results further elucidate that hybrid sp2/sp3 carbon coating greatly enhances the liquid/solid interface stability and the compatibility with the electrolyte, as well as facilitates the electron/ion transmission dynamics, achieving a uniform, stable, and LiF‐rich SEI film, ultimately improving the lithium storage performance. As expected, the as‐designed pSi@PC@MC anode delivers an impressive rate capability (756.6 mAh g−1 at 6 A g−1) and excellent cycling stability with a capacity of 1650 mAh g−1 after 300 cycles at 0.2 A g−1. Meanwhile, the pSi@PC@MC//NCM811 full‐cell exhibits an outstanding cycling stability (75.8% capacity retention after 100 cycles). This study highlights the significance of rational porous design and effective hybrid carbon encapsulation for the development of fast‐charging Si/carbon anodes. A hollow porous silicon/carbon composite with heterogeneous sp2/sp3 carbon coating is designed via finite element simulations. The rigid and flexible carbon encapsulation enhances the electron/ion transport kinetics and strengthens the interface stability. Meanwhile, hollow porous Si core further buffers the large volume expansion and stress release. As expected, the optimized anode shows an outstanding rate performance for lithium storage.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Cycle ratio</subject><subject>Dopamine</subject><subject>Electrolytes</subject><subject>Encapsulation</subject><subject>hybrid carbon encapsulation</subject><subject>Interface stability</subject><subject>Ion storage</subject><subject>Ion transport</subject><subject>Liquid-solid interfaces</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>porous Si</subject><subject>Porous silicon</subject><subject>stable SEI film</subject><subject>stress‐buffering</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhiMEoqVw5YgsceGyix07tnOstltaKQjEFq7R2OtkXTn2YieC3HgEzjweT4LLlkXigi9jS99849FfFM8JXhKMy9dpcG5Z4pJhUXH8oDglnNAFl2X98Hgn-KR4ktItxpSUTDwuTmjNSpnPafFj7UE563s07gy6ieDTPsQRXcweBqsTAr9F1340sQNtwaHNCMo6O84odOh9iGFKaGPRuQ9bgz5ZQB9sb7e_2y6d-WqVM2gFUQWP1l7DPk0ORptfXYjoyva7n9--r72J_YwaO-7sNOQRIUJvnhaPOnDJPLuvZ8XHy_XN6mrRvHtzvTpvFrqsJV4oA4pxJghUsuSs0lgoLkRFa0EkJQSbShsmgFGqa2AEc0VAEMUkZZpiQ8-KVwfvPobPk0ljO9ikjXPgTd6uzQ4pKZVcZvTlP-htmKLPv8sUq5ngNasztTxQOoaUounafbQDxLkluL1Lrb1LrT2mlhte3GsnNZjtEf8TUwbqA_DFOjP_R9du3jbNX_kvR1Kk7Q</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Cheng, Zhongling</creator><creator>Lin, Huanhao</creator><creator>Liu, Yueming</creator><creator>Li, Jihao</creator><creator>Jiang, Hao</creator><creator>Zhang, Haijiao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2958-2967</orcidid></search><sort><creationdate>202412</creationdate><title>Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High‐Energy Lithium Storage</title><author>Cheng, Zhongling ; Lin, Huanhao ; Liu, Yueming ; Li, Jihao ; Jiang, Hao ; Zhang, Haijiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2980-beab46471a582645c07b6775397183110e5ce47a433c9a4106b1a71b4834c30e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Cycle ratio</topic><topic>Dopamine</topic><topic>Electrolytes</topic><topic>Encapsulation</topic><topic>hybrid carbon encapsulation</topic><topic>Interface stability</topic><topic>Ion storage</topic><topic>Ion transport</topic><topic>Liquid-solid interfaces</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>porous Si</topic><topic>Porous silicon</topic><topic>stable SEI film</topic><topic>stress‐buffering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Zhongling</creatorcontrib><creatorcontrib>Lin, Huanhao</creatorcontrib><creatorcontrib>Liu, Yueming</creatorcontrib><creatorcontrib>Li, Jihao</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Zhang, Haijiao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Zhongling</au><au>Lin, Huanhao</au><au>Liu, Yueming</au><au>Li, Jihao</au><au>Jiang, Hao</au><au>Zhang, Haijiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High‐Energy Lithium Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>52</issue><spage>e2407560</spage><epage>n/a</epage><pages>e2407560-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>The stable electrode/electrolyte interface and fast electron/ion transport channel play important roles in boosting the rate performance and cycling life of lithium‐ion batteries. Herein, a porous silicon/carbon composite (pSi@PC@MC) is presented by integrating hollow porous silicon (pSi) with pitch‐derived carbon (PC) and dopamine‐derived mesoporous carbon (MC), employing microporous zeolite as the silicon source. The finite element simulation first reveals the stress release effect of rigid and flexible carbon encapsulation on the hollow Si anode for lithium‐ion storage. In situ and ex situ characterization results further elucidate that hybrid sp2/sp3 carbon coating greatly enhances the liquid/solid interface stability and the compatibility with the electrolyte, as well as facilitates the electron/ion transmission dynamics, achieving a uniform, stable, and LiF‐rich SEI film, ultimately improving the lithium storage performance. As expected, the as‐designed pSi@PC@MC anode delivers an impressive rate capability (756.6 mAh g−1 at 6 A g−1) and excellent cycling stability with a capacity of 1650 mAh g−1 after 300 cycles at 0.2 A g−1. Meanwhile, the pSi@PC@MC//NCM811 full‐cell exhibits an outstanding cycling stability (75.8% capacity retention after 100 cycles). This study highlights the significance of rational porous design and effective hybrid carbon encapsulation for the development of fast‐charging Si/carbon anodes. A hollow porous silicon/carbon composite with heterogeneous sp2/sp3 carbon coating is designed via finite element simulations. The rigid and flexible carbon encapsulation enhances the electron/ion transport kinetics and strengthens the interface stability. Meanwhile, hollow porous Si core further buffers the large volume expansion and stress release. As expected, the optimized anode shows an outstanding rate performance for lithium storage.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39428888</pmid><doi>10.1002/smll.202407560</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2958-2967</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-12, Vol.20 (52), p.e2407560-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_3118833868
source Wiley-Blackwell Read & Publish Collection
subjects Anodes
Carbon
Cycle ratio
Dopamine
Electrolytes
Encapsulation
hybrid carbon encapsulation
Interface stability
Ion storage
Ion transport
Liquid-solid interfaces
Lithium
Lithium-ion batteries
porous Si
Porous silicon
stable SEI film
stress‐buffering
title Enabling the Transport Dynamics and Interfacial Stability of Porous Si Anode Via Rigid and Flexible Carbon Encapsulation for High‐Energy Lithium Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A05%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20the%20Transport%20Dynamics%20and%20Interfacial%20Stability%20of%20Porous%20Si%20Anode%20Via%20Rigid%20and%20Flexible%20Carbon%20Encapsulation%20for%20High%E2%80%90Energy%20Lithium%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Cheng,%20Zhongling&rft.date=2024-12&rft.volume=20&rft.issue=52&rft.spage=e2407560&rft.epage=n/a&rft.pages=e2407560-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202407560&rft_dat=%3Cproquest_cross%3E3118833868%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2980-beab46471a582645c07b6775397183110e5ce47a433c9a4106b1a71b4834c30e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3149476949&rft_id=info:pmid/39428888&rfr_iscdi=true