Loading…
Near-Infrared Room-Temperature Phosphorescence from Monocyclic Luminophores
Compact luminophores with long emission wavelengths have aroused considerable theoretical and practical interest. Organics with room-temperature phosphorescence (RTP) are also desirable for their longer lifetimes and larger Stokes shifts than fluorescence. Utilizing the low electronic transition ene...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-11, p.e202417397 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compact luminophores with long emission wavelengths have aroused considerable theoretical and practical interest. Organics with room-temperature phosphorescence (RTP) are also desirable for their longer lifetimes and larger Stokes shifts than fluorescence. Utilizing the low electronic transition energy intrinsic to thiocarbonyl compounds, electron-withdrawing groups were attached to the 4H-pyran-4-thione core to further lower the excited state energies. The resulting mini-phosphors were doped into suitable polymer matrices. These purely organic, amorphous materials emitted near-infrared (NIR) RTP. Having a molar mass of only 162 g mol
, one of the phosphors emitted RTP that peaked at 750 nm, with a very large Stokes shift of 15485 cm
(403 nm). Thanks to the good processability of the polymer film, light-emitting diodes (LEDs) with NIR emission were easily fabricated by coating doped polymer on ultraviolet LEDs. This work provides an intriguing strategy to achieve NIR RTP using compact luminophores. |
---|---|
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202417397 |