Loading…
A formal goodness-of-fit test for spatial binary Markov random field models
Binary spatial observations arise in environmental and ecological studies, where Markov random field (MRF) models are often applied. Despite the prevalence and the long history of MRF models for spatial binary data, appropriate model diagnostics have remained an unresolved issue in practice. A compl...
Saved in:
Published in: | Biometrics 2024-10, Vol.80 (4) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Binary spatial observations arise in environmental and ecological studies, where Markov random field (MRF) models are often applied. Despite the prevalence and the long history of MRF models for spatial binary data, appropriate model diagnostics have remained an unresolved issue in practice. A complicating factor is that such models involve neighborhood specifications, which are difficult to assess for binary data. To address this, we propose a formal goodness-of-fit (GOF) test for diagnosing an MRF model for spatial binary values. The test statistic involves a type of conditional Moran's I based on the fitted conditional probabilities, which can detect departures in model form, including neighborhood structure. Numerical studies show that the GOF test can perform well in detecting deviations from a null model, with a focus on neighborhoods as a difficult issue. We illustrate the spatial test with an application to Besag's historical endive data as well as the breeding pattern of grasshopper sparrows across Iowa. |
---|---|
ISSN: | 0006-341X 1541-0420 1541-0420 |
DOI: | 10.1093/biomtc/ujae119 |