Loading…

Spatiotemporal variation of water level in wetlands based on multi-source remote sensing data and responses to changing environments

Under changing environmental conditions, water level is a crucial indicator for assessing the wetland hydrological cycle. However, due to some wetlands being located in remote and widely dispersed areas, acquiring data on wetland water level changes presents significant challenges, making wetland wa...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2024-12, Vol.955, p.177060, Article 177060
Main Authors: Zhang, Dequan, Hu, Boting, Chen, Liwen, Qi, Peng, Wu, Yao, Liu, Xuemei, Zhang, Guangxin, Zhang, Wenguang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Under changing environmental conditions, water level is a crucial indicator for assessing the wetland hydrological cycle. However, due to some wetlands being located in remote and widely dispersed areas, acquiring data on wetland water level changes presents significant challenges, making wetland water level monitoring exceptionally difficult. Wetlands are extensively distributed in western Jilin Province, China, and are experiencing significant degradation due to various factors including natural conditions, agricultural activities, and social development. To address this challenge, this study proposes a monitoring method that combines Sentinel-3 radar altimetry satellites with optical remote sensing images to obtain wetland water level data. Additionally, the study takes into account the Chinese government's Interconnected River System Network Project (IRSNP), classifying wetlands in western Jilin Province into three different water recharge scenarios: direct recharge through main and branch canals, indirect recharge through ditches, and no recharge to isolated wetlands. This study analyses the relationship between wetland water level changes and climatic factors, and assesses how IRSNP can mitigate the negative impacts of climate factors on wetland water levels across different recharge scenarios. The results show that: (1) the wetland water level monitoring method, has high accuracy and feasibility. The average difference between the in-situ measured and satellite-monitored water levels was 0.254 m. (2) There was an overall increasing trend in wetland water levels directly influenced by IRSNP, an insignificant decreasing trend in wetland water levels indirectly influenced by IRSNP. (3) Increased precipitation and decreased evaporation are the predominant climatic factors contributing to rising wetland water levels. Conversely, lower relative humidity and higher temperatures primarily lead to declining water levels. The construction of IRSNP can mitigate the impact of climate change on water levels. Thus, under changing environmental conditions, the implementation of IRSNP has positively impacted wetland protection and provides valuable insights for understanding wetland water level changes and managing water resources effectively. [Display omitted] •A new water level monitoring method in wetlands is proposed by coupling Sentinel-3 and water body.•Water level in wetlands directly impacted by IRSNP showed a generally increasing trend.•The increase of rai
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.177060