Loading…

Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs

Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage me...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-11, Vol.16 (44), p.60132-60141
Main Authors: Xie, Yihui, Li, Ming, Ma, Yijian, Lin, Fakun, Zhu, Hongbiao, Li, Wenbiao, Jiang, Shangxu, Shen, Chengshuo, Jia, Zhongfan, Zhang, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63
container_end_page 60141
container_issue 44
container_start_page 60132
container_title ACS applied materials & interfaces
container_volume 16
creator Xie, Yihui
Li, Ming
Ma, Yijian
Lin, Fakun
Zhu, Hongbiao
Li, Wenbiao
Jiang, Shangxu
Shen, Chengshuo
Jia, Zhongfan
Zhang, Kai
description Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.
doi_str_mv 10.1021/acsami.4c09801
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120057859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120057859</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMqKMCCnFjziPMVQFKlXqQCcWy7mxwVVe2MnQ_npcpXRjule63zk69yB0T_CcYEqeJThZm3kEOEsxuUBTkkVRmFJOL897FE3QjXM7jGNGMb9GE-YPJE7IFC3yQ9vtrSlNo4L8Z1Dt4IJlpaC3LXyr2rje7oNlI4tKueBj6JQ1rQ029ks2BoL8c_XibtGVlpVTd6c5Q9vX5XbxHq43b6tFvg4lJbwPNcs0RDqLZKyJ1JRrXrKSs0RTKHGqCwDG46TEioJSBIAXBRQsVZByKWM2Q4-jbWdbH9T1wqcDVVWyOaYWjFCMeZLyzKPzEQXbOmeVFp01tbR7QbA49ibG3sSpNy94OHkPRa3KM_5XlAeeRsALxa4dbOM__c_tF3N2eWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120057859</pqid></control><display><type>article</type><title>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Xie, Yihui ; Li, Ming ; Ma, Yijian ; Lin, Fakun ; Zhu, Hongbiao ; Li, Wenbiao ; Jiang, Shangxu ; Shen, Chengshuo ; Jia, Zhongfan ; Zhang, Kai</creator><creatorcontrib>Xie, Yihui ; Li, Ming ; Ma, Yijian ; Lin, Fakun ; Zhu, Hongbiao ; Li, Wenbiao ; Jiang, Shangxu ; Shen, Chengshuo ; Jia, Zhongfan ; Zhang, Kai</creatorcontrib><description>Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c09801</identifier><identifier>PMID: 39441671</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-11, Vol.16 (44), p.60132-60141</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63</cites><orcidid>0000-0003-2422-3922 ; 0000-0003-1966-458X ; 0000-0001-9690-7288 ; 0000-0003-0536-4471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39441671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Yihui</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ma, Yijian</creatorcontrib><creatorcontrib>Lin, Fakun</creatorcontrib><creatorcontrib>Zhu, Hongbiao</creatorcontrib><creatorcontrib>Li, Wenbiao</creatorcontrib><creatorcontrib>Jiang, Shangxu</creatorcontrib><creatorcontrib>Shen, Chengshuo</creatorcontrib><creatorcontrib>Jia, Zhongfan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><title>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwMqKMCCnFjziPMVQFKlXqQCcWy7mxwVVe2MnQ_npcpXRjule63zk69yB0T_CcYEqeJThZm3kEOEsxuUBTkkVRmFJOL897FE3QjXM7jGNGMb9GE-YPJE7IFC3yQ9vtrSlNo4L8Z1Dt4IJlpaC3LXyr2rje7oNlI4tKueBj6JQ1rQ029ks2BoL8c_XibtGVlpVTd6c5Q9vX5XbxHq43b6tFvg4lJbwPNcs0RDqLZKyJ1JRrXrKSs0RTKHGqCwDG46TEioJSBIAXBRQsVZByKWM2Q4-jbWdbH9T1wqcDVVWyOaYWjFCMeZLyzKPzEQXbOmeVFp01tbR7QbA49ibG3sSpNy94OHkPRa3KM_5XlAeeRsALxa4dbOM__c_tF3N2eWI</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Xie, Yihui</creator><creator>Li, Ming</creator><creator>Ma, Yijian</creator><creator>Lin, Fakun</creator><creator>Zhu, Hongbiao</creator><creator>Li, Wenbiao</creator><creator>Jiang, Shangxu</creator><creator>Shen, Chengshuo</creator><creator>Jia, Zhongfan</creator><creator>Zhang, Kai</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2422-3922</orcidid><orcidid>https://orcid.org/0000-0003-1966-458X</orcidid><orcidid>https://orcid.org/0000-0001-9690-7288</orcidid><orcidid>https://orcid.org/0000-0003-0536-4471</orcidid></search><sort><creationdate>20241106</creationdate><title>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</title><author>Xie, Yihui ; Li, Ming ; Ma, Yijian ; Lin, Fakun ; Zhu, Hongbiao ; Li, Wenbiao ; Jiang, Shangxu ; Shen, Chengshuo ; Jia, Zhongfan ; Zhang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yihui</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ma, Yijian</creatorcontrib><creatorcontrib>Lin, Fakun</creatorcontrib><creatorcontrib>Zhu, Hongbiao</creatorcontrib><creatorcontrib>Li, Wenbiao</creatorcontrib><creatorcontrib>Jiang, Shangxu</creatorcontrib><creatorcontrib>Shen, Chengshuo</creatorcontrib><creatorcontrib>Jia, Zhongfan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yihui</au><au>Li, Ming</au><au>Ma, Yijian</au><au>Lin, Fakun</au><au>Zhu, Hongbiao</au><au>Li, Wenbiao</au><au>Jiang, Shangxu</au><au>Shen, Chengshuo</au><au>Jia, Zhongfan</au><au>Zhang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>16</volume><issue>44</issue><spage>60132</spage><epage>60141</epage><pages>60132-60141</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39441671</pmid><doi>10.1021/acsami.4c09801</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2422-3922</orcidid><orcidid>https://orcid.org/0000-0003-1966-458X</orcidid><orcidid>https://orcid.org/0000-0001-9690-7288</orcidid><orcidid>https://orcid.org/0000-0003-0536-4471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-11, Vol.16 (44), p.60132-60141
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3120057859
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Azopyridine%20Aqueous%20Electrochemistry%20Enables%20Superior%20Organic%20AZIBs&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xie,%20Yihui&rft.date=2024-11-06&rft.volume=16&rft.issue=44&rft.spage=60132&rft.epage=60141&rft.pages=60132-60141&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c09801&rft_dat=%3Cproquest_cross%3E3120057859%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120057859&rft_id=info:pmid/39441671&rfr_iscdi=true