Loading…
Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs
Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage me...
Saved in:
Published in: | ACS applied materials & interfaces 2024-11, Vol.16 (44), p.60132-60141 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63 |
container_end_page | 60141 |
container_issue | 44 |
container_start_page | 60132 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Xie, Yihui Li, Ming Ma, Yijian Lin, Fakun Zhu, Hongbiao Li, Wenbiao Jiang, Shangxu Shen, Chengshuo Jia, Zhongfan Zhang, Kai |
description | Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family. |
doi_str_mv | 10.1021/acsami.4c09801 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120057859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120057859</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMqKMCCnFjziPMVQFKlXqQCcWy7mxwVVe2MnQ_npcpXRjule63zk69yB0T_CcYEqeJThZm3kEOEsxuUBTkkVRmFJOL897FE3QjXM7jGNGMb9GE-YPJE7IFC3yQ9vtrSlNo4L8Z1Dt4IJlpaC3LXyr2rje7oNlI4tKueBj6JQ1rQ029ks2BoL8c_XibtGVlpVTd6c5Q9vX5XbxHq43b6tFvg4lJbwPNcs0RDqLZKyJ1JRrXrKSs0RTKHGqCwDG46TEioJSBIAXBRQsVZByKWM2Q4-jbWdbH9T1wqcDVVWyOaYWjFCMeZLyzKPzEQXbOmeVFp01tbR7QbA49ibG3sSpNy94OHkPRa3KM_5XlAeeRsALxa4dbOM__c_tF3N2eWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120057859</pqid></control><display><type>article</type><title>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Xie, Yihui ; Li, Ming ; Ma, Yijian ; Lin, Fakun ; Zhu, Hongbiao ; Li, Wenbiao ; Jiang, Shangxu ; Shen, Chengshuo ; Jia, Zhongfan ; Zhang, Kai</creator><creatorcontrib>Xie, Yihui ; Li, Ming ; Ma, Yijian ; Lin, Fakun ; Zhu, Hongbiao ; Li, Wenbiao ; Jiang, Shangxu ; Shen, Chengshuo ; Jia, Zhongfan ; Zhang, Kai</creatorcontrib><description>Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c09801</identifier><identifier>PMID: 39441671</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials & interfaces, 2024-11, Vol.16 (44), p.60132-60141</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63</cites><orcidid>0000-0003-2422-3922 ; 0000-0003-1966-458X ; 0000-0001-9690-7288 ; 0000-0003-0536-4471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39441671$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Yihui</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ma, Yijian</creatorcontrib><creatorcontrib>Lin, Fakun</creatorcontrib><creatorcontrib>Zhu, Hongbiao</creatorcontrib><creatorcontrib>Li, Wenbiao</creatorcontrib><creatorcontrib>Jiang, Shangxu</creatorcontrib><creatorcontrib>Shen, Chengshuo</creatorcontrib><creatorcontrib>Jia, Zhongfan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><title>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwMqKMCCnFjziPMVQFKlXqQCcWy7mxwVVe2MnQ_npcpXRjule63zk69yB0T_CcYEqeJThZm3kEOEsxuUBTkkVRmFJOL897FE3QjXM7jGNGMb9GE-YPJE7IFC3yQ9vtrSlNo4L8Z1Dt4IJlpaC3LXyr2rje7oNlI4tKueBj6JQ1rQ029ks2BoL8c_XibtGVlpVTd6c5Q9vX5XbxHq43b6tFvg4lJbwPNcs0RDqLZKyJ1JRrXrKSs0RTKHGqCwDG46TEioJSBIAXBRQsVZByKWM2Q4-jbWdbH9T1wqcDVVWyOaYWjFCMeZLyzKPzEQXbOmeVFp01tbR7QbA49ibG3sSpNy94OHkPRa3KM_5XlAeeRsALxa4dbOM__c_tF3N2eWI</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Xie, Yihui</creator><creator>Li, Ming</creator><creator>Ma, Yijian</creator><creator>Lin, Fakun</creator><creator>Zhu, Hongbiao</creator><creator>Li, Wenbiao</creator><creator>Jiang, Shangxu</creator><creator>Shen, Chengshuo</creator><creator>Jia, Zhongfan</creator><creator>Zhang, Kai</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2422-3922</orcidid><orcidid>https://orcid.org/0000-0003-1966-458X</orcidid><orcidid>https://orcid.org/0000-0001-9690-7288</orcidid><orcidid>https://orcid.org/0000-0003-0536-4471</orcidid></search><sort><creationdate>20241106</creationdate><title>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</title><author>Xie, Yihui ; Li, Ming ; Ma, Yijian ; Lin, Fakun ; Zhu, Hongbiao ; Li, Wenbiao ; Jiang, Shangxu ; Shen, Chengshuo ; Jia, Zhongfan ; Zhang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yihui</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Ma, Yijian</creatorcontrib><creatorcontrib>Lin, Fakun</creatorcontrib><creatorcontrib>Zhu, Hongbiao</creatorcontrib><creatorcontrib>Li, Wenbiao</creatorcontrib><creatorcontrib>Jiang, Shangxu</creatorcontrib><creatorcontrib>Shen, Chengshuo</creatorcontrib><creatorcontrib>Jia, Zhongfan</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yihui</au><au>Li, Ming</au><au>Ma, Yijian</au><au>Lin, Fakun</au><au>Zhu, Hongbiao</au><au>Li, Wenbiao</au><au>Jiang, Shangxu</au><au>Shen, Chengshuo</au><au>Jia, Zhongfan</au><au>Zhang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>16</volume><issue>44</issue><spage>60132</spage><epage>60141</epage><pages>60132-60141</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N–/–NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g–1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39441671</pmid><doi>10.1021/acsami.4c09801</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2422-3922</orcidid><orcidid>https://orcid.org/0000-0003-1966-458X</orcidid><orcidid>https://orcid.org/0000-0001-9690-7288</orcidid><orcidid>https://orcid.org/0000-0003-0536-4471</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-11, Vol.16 (44), p.60132-60141 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_3120057859 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Energy, Environmental, and Catalysis Applications |
title | Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Azopyridine%20Aqueous%20Electrochemistry%20Enables%20Superior%20Organic%20AZIBs&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Xie,%20Yihui&rft.date=2024-11-06&rft.volume=16&rft.issue=44&rft.spage=60132&rft.epage=60141&rft.pages=60132-60141&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c09801&rft_dat=%3Cproquest_cross%3E3120057859%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a215t-f39fc4f94a6f1af25f5d3d537f2cd08fbcc3567d0e2cee1cc5bbcb38ec85aa63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120057859&rft_id=info:pmid/39441671&rfr_iscdi=true |