Loading…
Targeting immune–fibroblast cell communication in heart failure
Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction 1 , 2 . However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibros...
Saved in:
Published in: | Nature (London) 2024-11, Vol.635 (8038), p.423-433 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3 |
container_end_page | 433 |
container_issue | 8038 |
container_start_page | 423 |
container_title | Nature (London) |
container_volume | 635 |
creator | Amrute, Junedh M. Luo, Xin Penna, Vinay Yang, Steven Yamawaki, Tracy Hayat, Sikander Bredemeyer, Andrea Jung, In-Hyuk Kadyrov, Farid F. Heo, Gyu Seong Venkatesan, Rajiu Shi, Sally Yu Parvathaneni, Alekhya Koenig, Andrew L. Kuppe, Christoph Baker, Candice Luehmann, Hannah Jones, Cameran Kopecky, Benjamin Zeng, Xue Bleckwehl, Tore Ma, Pan Lee, Paul Terada, Yuriko Fu, Angela Furtado, Milena Kreisel, Daniel Kovacs, Atilla Stitziel, Nathan O. Jackson, Simon Li, Chi-Ming Liu, Yongjian Rosenthal, Nadia A. Kramann, Rafael Ason, Brandon Lavine, Kory J. |
description | Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction
1
,
2
. However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis
3
,
4
. Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP
+
fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2
+
monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function.
A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis. |
doi_str_mv | 10.1038/s41586-024-08008-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120059359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120059359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmvtlWYo3ENzUdchkMjVlLjWZWbjzHXxDn8TUqQouhMAJ_N_5zzk_AKcIXiJI5FWkiEmeQ0xzKCGUOdsDU0QFzymXYh9MIcQySYRPwFGMawghQ4IegglRlBKh8BTMlyasXO_bVeabZmjdx9t75YvQFbWJfWZdXWe22yremt53bebb7NmZ0GeV8fUQ3DE4qEwd3cmuzsDTzfVycZc_PN7eL-YPucWM93mBOaaWV6RUJH0MNUQSQpXDXBqhmLKF4hYT7AwzSAiHCS9FYcsKc85UQWbgYvTdhO5lcLHXjY_b_UzruiFqgnC6T5H0ZuD8D7ruhtCm7RJFsGKIS5koPFI2dDEGV-lN8I0JrxpBvQ1YjwHrFLD-Cliz1HS2sx6KxpU_Ld-JJoCMQExSu3Lhd_Y_tp9-rYX2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132951688</pqid></control><display><type>article</type><title>Targeting immune–fibroblast cell communication in heart failure</title><source>Nature</source><creator>Amrute, Junedh M. ; Luo, Xin ; Penna, Vinay ; Yang, Steven ; Yamawaki, Tracy ; Hayat, Sikander ; Bredemeyer, Andrea ; Jung, In-Hyuk ; Kadyrov, Farid F. ; Heo, Gyu Seong ; Venkatesan, Rajiu ; Shi, Sally Yu ; Parvathaneni, Alekhya ; Koenig, Andrew L. ; Kuppe, Christoph ; Baker, Candice ; Luehmann, Hannah ; Jones, Cameran ; Kopecky, Benjamin ; Zeng, Xue ; Bleckwehl, Tore ; Ma, Pan ; Lee, Paul ; Terada, Yuriko ; Fu, Angela ; Furtado, Milena ; Kreisel, Daniel ; Kovacs, Atilla ; Stitziel, Nathan O. ; Jackson, Simon ; Li, Chi-Ming ; Liu, Yongjian ; Rosenthal, Nadia A. ; Kramann, Rafael ; Ason, Brandon ; Lavine, Kory J.</creator><creatorcontrib>Amrute, Junedh M. ; Luo, Xin ; Penna, Vinay ; Yang, Steven ; Yamawaki, Tracy ; Hayat, Sikander ; Bredemeyer, Andrea ; Jung, In-Hyuk ; Kadyrov, Farid F. ; Heo, Gyu Seong ; Venkatesan, Rajiu ; Shi, Sally Yu ; Parvathaneni, Alekhya ; Koenig, Andrew L. ; Kuppe, Christoph ; Baker, Candice ; Luehmann, Hannah ; Jones, Cameran ; Kopecky, Benjamin ; Zeng, Xue ; Bleckwehl, Tore ; Ma, Pan ; Lee, Paul ; Terada, Yuriko ; Fu, Angela ; Furtado, Milena ; Kreisel, Daniel ; Kovacs, Atilla ; Stitziel, Nathan O. ; Jackson, Simon ; Li, Chi-Ming ; Liu, Yongjian ; Rosenthal, Nadia A. ; Kramann, Rafael ; Ason, Brandon ; Lavine, Kory J.</creatorcontrib><description>Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction
1
,
2
. However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis
3
,
4
. Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP
+
fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2
+
monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function.
A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-08008-5</identifier><identifier>PMID: 39443792</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/21 ; 13/31 ; 13/51 ; 14 ; 38 ; 45 ; 59/78 ; 631/250/256 ; 631/337/2019 ; 631/443/592/75/230 ; 64 ; 64/60 ; Animal models ; Animals ; CC chemokine receptors ; Cell Adhesion Molecules - metabolism ; Cell Communication - immunology ; Cell interactions ; Cell Lineage ; Chemokine receptors ; Chemokines ; Chromatin ; Chromatin - metabolism ; Congestive heart failure ; Coronary artery disease ; Cytokines ; Disease ; Disease Models, Animal ; Endopeptidases - metabolism ; Epigenetics ; Epitope Mapping ; Female ; Fibroblasts ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Fibrosis ; Gene expression ; Gene mapping ; Genetic analysis ; Heart diseases ; Heart failure ; Heart Failure - immunology ; Heart Failure - pathology ; Human performance ; Humanities and Social Sciences ; Humans ; IL-1β ; Inflammation ; Injury analysis ; Interleukin 1 receptors ; Interleukin-1beta - immunology ; Interleukin-1beta - metabolism ; Ischemia ; Ligands ; Macrophages ; Macrophages - immunology ; Macrophages - metabolism ; Male ; Membrane Proteins - metabolism ; Mice ; Molecular modelling ; Monoclonal antibodies ; Monocyte chemoattractant protein 1 ; Monocytes ; Monocytes - immunology ; Monocytes - metabolism ; multidisciplinary ; Multiomics ; Myocardial Infarction - immunology ; Myocardial Infarction - metabolism ; Myocardial Infarction - pathology ; Myocardium - immunology ; Myocardium - metabolism ; Myocardium - pathology ; Myofibroblasts - metabolism ; Myofibroblasts - pathology ; Peptide mapping ; Phenotypes ; Proteins ; Quality control ; Receptors, CCR2 - metabolism ; Science ; Science (multidisciplinary) ; Serine Endopeptidases - metabolism ; Signal Transduction ; Single-Cell Analysis ; Spatial analysis ; Transcriptomics</subject><ispartof>Nature (London), 2024-11, Vol.635 (8038), p.423-433</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Nov 14, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3</cites><orcidid>0000-0003-1116-0512 ; 0009-0008-7793-3008 ; 0000-0003-1948-9945 ; 0000-0003-4384-1267 ; 0000-0002-2976-1941 ; 0000-0002-7516-6772 ; 0000-0002-1118-1535 ; 0000-0003-2970-5998 ; 0000-0003-4597-9833 ; 0000-0002-6851-0168 ; 0000-0002-7599-7365 ; 0000-0002-9087-6254 ; 0000-0002-7716-5650 ; 0000-0002-9469-9590 ; 0000-0001-5919-8371 ; 0000-0002-4963-8211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39443792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amrute, Junedh M.</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Penna, Vinay</creatorcontrib><creatorcontrib>Yang, Steven</creatorcontrib><creatorcontrib>Yamawaki, Tracy</creatorcontrib><creatorcontrib>Hayat, Sikander</creatorcontrib><creatorcontrib>Bredemeyer, Andrea</creatorcontrib><creatorcontrib>Jung, In-Hyuk</creatorcontrib><creatorcontrib>Kadyrov, Farid F.</creatorcontrib><creatorcontrib>Heo, Gyu Seong</creatorcontrib><creatorcontrib>Venkatesan, Rajiu</creatorcontrib><creatorcontrib>Shi, Sally Yu</creatorcontrib><creatorcontrib>Parvathaneni, Alekhya</creatorcontrib><creatorcontrib>Koenig, Andrew L.</creatorcontrib><creatorcontrib>Kuppe, Christoph</creatorcontrib><creatorcontrib>Baker, Candice</creatorcontrib><creatorcontrib>Luehmann, Hannah</creatorcontrib><creatorcontrib>Jones, Cameran</creatorcontrib><creatorcontrib>Kopecky, Benjamin</creatorcontrib><creatorcontrib>Zeng, Xue</creatorcontrib><creatorcontrib>Bleckwehl, Tore</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Lee, Paul</creatorcontrib><creatorcontrib>Terada, Yuriko</creatorcontrib><creatorcontrib>Fu, Angela</creatorcontrib><creatorcontrib>Furtado, Milena</creatorcontrib><creatorcontrib>Kreisel, Daniel</creatorcontrib><creatorcontrib>Kovacs, Atilla</creatorcontrib><creatorcontrib>Stitziel, Nathan O.</creatorcontrib><creatorcontrib>Jackson, Simon</creatorcontrib><creatorcontrib>Li, Chi-Ming</creatorcontrib><creatorcontrib>Liu, Yongjian</creatorcontrib><creatorcontrib>Rosenthal, Nadia A.</creatorcontrib><creatorcontrib>Kramann, Rafael</creatorcontrib><creatorcontrib>Ason, Brandon</creatorcontrib><creatorcontrib>Lavine, Kory J.</creatorcontrib><title>Targeting immune–fibroblast cell communication in heart failure</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction
1
,
2
. However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis
3
,
4
. Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP
+
fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2
+
monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function.
A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis.</description><subject>13/1</subject><subject>13/21</subject><subject>13/31</subject><subject>13/51</subject><subject>14</subject><subject>38</subject><subject>45</subject><subject>59/78</subject><subject>631/250/256</subject><subject>631/337/2019</subject><subject>631/443/592/75/230</subject><subject>64</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>CC chemokine receptors</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Communication - immunology</subject><subject>Cell interactions</subject><subject>Cell Lineage</subject><subject>Chemokine receptors</subject><subject>Chemokines</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Congestive heart failure</subject><subject>Coronary artery disease</subject><subject>Cytokines</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Endopeptidases - metabolism</subject><subject>Epigenetics</subject><subject>Epitope Mapping</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart Failure - immunology</subject><subject>Heart Failure - pathology</subject><subject>Human performance</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>IL-1β</subject><subject>Inflammation</subject><subject>Injury analysis</subject><subject>Interleukin 1 receptors</subject><subject>Interleukin-1beta - immunology</subject><subject>Interleukin-1beta - metabolism</subject><subject>Ischemia</subject><subject>Ligands</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Monoclonal antibodies</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>multidisciplinary</subject><subject>Multiomics</subject><subject>Myocardial Infarction - immunology</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardium - immunology</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myofibroblasts - metabolism</subject><subject>Myofibroblasts - pathology</subject><subject>Peptide mapping</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Receptors, CCR2 - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>Spatial analysis</subject><subject>Transcriptomics</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmvtlWYo3ENzUdchkMjVlLjWZWbjzHXxDn8TUqQouhMAJ_N_5zzk_AKcIXiJI5FWkiEmeQ0xzKCGUOdsDU0QFzymXYh9MIcQySYRPwFGMawghQ4IegglRlBKh8BTMlyasXO_bVeabZmjdx9t75YvQFbWJfWZdXWe22yremt53bebb7NmZ0GeV8fUQ3DE4qEwd3cmuzsDTzfVycZc_PN7eL-YPucWM93mBOaaWV6RUJH0MNUQSQpXDXBqhmLKF4hYT7AwzSAiHCS9FYcsKc85UQWbgYvTdhO5lcLHXjY_b_UzruiFqgnC6T5H0ZuD8D7ruhtCm7RJFsGKIS5koPFI2dDEGV-lN8I0JrxpBvQ1YjwHrFLD-Cliz1HS2sx6KxpU_Ld-JJoCMQExSu3Lhd_Y_tp9-rYX2</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Amrute, Junedh M.</creator><creator>Luo, Xin</creator><creator>Penna, Vinay</creator><creator>Yang, Steven</creator><creator>Yamawaki, Tracy</creator><creator>Hayat, Sikander</creator><creator>Bredemeyer, Andrea</creator><creator>Jung, In-Hyuk</creator><creator>Kadyrov, Farid F.</creator><creator>Heo, Gyu Seong</creator><creator>Venkatesan, Rajiu</creator><creator>Shi, Sally Yu</creator><creator>Parvathaneni, Alekhya</creator><creator>Koenig, Andrew L.</creator><creator>Kuppe, Christoph</creator><creator>Baker, Candice</creator><creator>Luehmann, Hannah</creator><creator>Jones, Cameran</creator><creator>Kopecky, Benjamin</creator><creator>Zeng, Xue</creator><creator>Bleckwehl, Tore</creator><creator>Ma, Pan</creator><creator>Lee, Paul</creator><creator>Terada, Yuriko</creator><creator>Fu, Angela</creator><creator>Furtado, Milena</creator><creator>Kreisel, Daniel</creator><creator>Kovacs, Atilla</creator><creator>Stitziel, Nathan O.</creator><creator>Jackson, Simon</creator><creator>Li, Chi-Ming</creator><creator>Liu, Yongjian</creator><creator>Rosenthal, Nadia A.</creator><creator>Kramann, Rafael</creator><creator>Ason, Brandon</creator><creator>Lavine, Kory J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1116-0512</orcidid><orcidid>https://orcid.org/0009-0008-7793-3008</orcidid><orcidid>https://orcid.org/0000-0003-1948-9945</orcidid><orcidid>https://orcid.org/0000-0003-4384-1267</orcidid><orcidid>https://orcid.org/0000-0002-2976-1941</orcidid><orcidid>https://orcid.org/0000-0002-7516-6772</orcidid><orcidid>https://orcid.org/0000-0002-1118-1535</orcidid><orcidid>https://orcid.org/0000-0003-2970-5998</orcidid><orcidid>https://orcid.org/0000-0003-4597-9833</orcidid><orcidid>https://orcid.org/0000-0002-6851-0168</orcidid><orcidid>https://orcid.org/0000-0002-7599-7365</orcidid><orcidid>https://orcid.org/0000-0002-9087-6254</orcidid><orcidid>https://orcid.org/0000-0002-7716-5650</orcidid><orcidid>https://orcid.org/0000-0002-9469-9590</orcidid><orcidid>https://orcid.org/0000-0001-5919-8371</orcidid><orcidid>https://orcid.org/0000-0002-4963-8211</orcidid></search><sort><creationdate>20241114</creationdate><title>Targeting immune–fibroblast cell communication in heart failure</title><author>Amrute, Junedh M. ; Luo, Xin ; Penna, Vinay ; Yang, Steven ; Yamawaki, Tracy ; Hayat, Sikander ; Bredemeyer, Andrea ; Jung, In-Hyuk ; Kadyrov, Farid F. ; Heo, Gyu Seong ; Venkatesan, Rajiu ; Shi, Sally Yu ; Parvathaneni, Alekhya ; Koenig, Andrew L. ; Kuppe, Christoph ; Baker, Candice ; Luehmann, Hannah ; Jones, Cameran ; Kopecky, Benjamin ; Zeng, Xue ; Bleckwehl, Tore ; Ma, Pan ; Lee, Paul ; Terada, Yuriko ; Fu, Angela ; Furtado, Milena ; Kreisel, Daniel ; Kovacs, Atilla ; Stitziel, Nathan O. ; Jackson, Simon ; Li, Chi-Ming ; Liu, Yongjian ; Rosenthal, Nadia A. ; Kramann, Rafael ; Ason, Brandon ; Lavine, Kory J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>13/21</topic><topic>13/31</topic><topic>13/51</topic><topic>14</topic><topic>38</topic><topic>45</topic><topic>59/78</topic><topic>631/250/256</topic><topic>631/337/2019</topic><topic>631/443/592/75/230</topic><topic>64</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>CC chemokine receptors</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Communication - immunology</topic><topic>Cell interactions</topic><topic>Cell Lineage</topic><topic>Chemokine receptors</topic><topic>Chemokines</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Congestive heart failure</topic><topic>Coronary artery disease</topic><topic>Cytokines</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Endopeptidases - metabolism</topic><topic>Epigenetics</topic><topic>Epitope Mapping</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart Failure - immunology</topic><topic>Heart Failure - pathology</topic><topic>Human performance</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>IL-1β</topic><topic>Inflammation</topic><topic>Injury analysis</topic><topic>Interleukin 1 receptors</topic><topic>Interleukin-1beta - immunology</topic><topic>Interleukin-1beta - metabolism</topic><topic>Ischemia</topic><topic>Ligands</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Monoclonal antibodies</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>multidisciplinary</topic><topic>Multiomics</topic><topic>Myocardial Infarction - immunology</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardium - immunology</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myofibroblasts - metabolism</topic><topic>Myofibroblasts - pathology</topic><topic>Peptide mapping</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Receptors, CCR2 - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>Spatial analysis</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amrute, Junedh M.</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Penna, Vinay</creatorcontrib><creatorcontrib>Yang, Steven</creatorcontrib><creatorcontrib>Yamawaki, Tracy</creatorcontrib><creatorcontrib>Hayat, Sikander</creatorcontrib><creatorcontrib>Bredemeyer, Andrea</creatorcontrib><creatorcontrib>Jung, In-Hyuk</creatorcontrib><creatorcontrib>Kadyrov, Farid F.</creatorcontrib><creatorcontrib>Heo, Gyu Seong</creatorcontrib><creatorcontrib>Venkatesan, Rajiu</creatorcontrib><creatorcontrib>Shi, Sally Yu</creatorcontrib><creatorcontrib>Parvathaneni, Alekhya</creatorcontrib><creatorcontrib>Koenig, Andrew L.</creatorcontrib><creatorcontrib>Kuppe, Christoph</creatorcontrib><creatorcontrib>Baker, Candice</creatorcontrib><creatorcontrib>Luehmann, Hannah</creatorcontrib><creatorcontrib>Jones, Cameran</creatorcontrib><creatorcontrib>Kopecky, Benjamin</creatorcontrib><creatorcontrib>Zeng, Xue</creatorcontrib><creatorcontrib>Bleckwehl, Tore</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Lee, Paul</creatorcontrib><creatorcontrib>Terada, Yuriko</creatorcontrib><creatorcontrib>Fu, Angela</creatorcontrib><creatorcontrib>Furtado, Milena</creatorcontrib><creatorcontrib>Kreisel, Daniel</creatorcontrib><creatorcontrib>Kovacs, Atilla</creatorcontrib><creatorcontrib>Stitziel, Nathan O.</creatorcontrib><creatorcontrib>Jackson, Simon</creatorcontrib><creatorcontrib>Li, Chi-Ming</creatorcontrib><creatorcontrib>Liu, Yongjian</creatorcontrib><creatorcontrib>Rosenthal, Nadia A.</creatorcontrib><creatorcontrib>Kramann, Rafael</creatorcontrib><creatorcontrib>Ason, Brandon</creatorcontrib><creatorcontrib>Lavine, Kory J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amrute, Junedh M.</au><au>Luo, Xin</au><au>Penna, Vinay</au><au>Yang, Steven</au><au>Yamawaki, Tracy</au><au>Hayat, Sikander</au><au>Bredemeyer, Andrea</au><au>Jung, In-Hyuk</au><au>Kadyrov, Farid F.</au><au>Heo, Gyu Seong</au><au>Venkatesan, Rajiu</au><au>Shi, Sally Yu</au><au>Parvathaneni, Alekhya</au><au>Koenig, Andrew L.</au><au>Kuppe, Christoph</au><au>Baker, Candice</au><au>Luehmann, Hannah</au><au>Jones, Cameran</au><au>Kopecky, Benjamin</au><au>Zeng, Xue</au><au>Bleckwehl, Tore</au><au>Ma, Pan</au><au>Lee, Paul</au><au>Terada, Yuriko</au><au>Fu, Angela</au><au>Furtado, Milena</au><au>Kreisel, Daniel</au><au>Kovacs, Atilla</au><au>Stitziel, Nathan O.</au><au>Jackson, Simon</au><au>Li, Chi-Ming</au><au>Liu, Yongjian</au><au>Rosenthal, Nadia A.</au><au>Kramann, Rafael</au><au>Ason, Brandon</au><au>Lavine, Kory J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting immune–fibroblast cell communication in heart failure</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-11-14</date><risdate>2024</risdate><volume>635</volume><issue>8038</issue><spage>423</spage><epage>433</epage><pages>423-433</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction
1
,
2
. However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis
3
,
4
. Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP
+
fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2
+
monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function.
A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39443792</pmid><doi>10.1038/s41586-024-08008-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1116-0512</orcidid><orcidid>https://orcid.org/0009-0008-7793-3008</orcidid><orcidid>https://orcid.org/0000-0003-1948-9945</orcidid><orcidid>https://orcid.org/0000-0003-4384-1267</orcidid><orcidid>https://orcid.org/0000-0002-2976-1941</orcidid><orcidid>https://orcid.org/0000-0002-7516-6772</orcidid><orcidid>https://orcid.org/0000-0002-1118-1535</orcidid><orcidid>https://orcid.org/0000-0003-2970-5998</orcidid><orcidid>https://orcid.org/0000-0003-4597-9833</orcidid><orcidid>https://orcid.org/0000-0002-6851-0168</orcidid><orcidid>https://orcid.org/0000-0002-7599-7365</orcidid><orcidid>https://orcid.org/0000-0002-9087-6254</orcidid><orcidid>https://orcid.org/0000-0002-7716-5650</orcidid><orcidid>https://orcid.org/0000-0002-9469-9590</orcidid><orcidid>https://orcid.org/0000-0001-5919-8371</orcidid><orcidid>https://orcid.org/0000-0002-4963-8211</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-11, Vol.635 (8038), p.423-433 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_3120059359 |
source | Nature |
subjects | 13/1 13/21 13/31 13/51 14 38 45 59/78 631/250/256 631/337/2019 631/443/592/75/230 64 64/60 Animal models Animals CC chemokine receptors Cell Adhesion Molecules - metabolism Cell Communication - immunology Cell interactions Cell Lineage Chemokine receptors Chemokines Chromatin Chromatin - metabolism Congestive heart failure Coronary artery disease Cytokines Disease Disease Models, Animal Endopeptidases - metabolism Epigenetics Epitope Mapping Female Fibroblasts Fibroblasts - metabolism Fibroblasts - pathology Fibrosis Gene expression Gene mapping Genetic analysis Heart diseases Heart failure Heart Failure - immunology Heart Failure - pathology Human performance Humanities and Social Sciences Humans IL-1β Inflammation Injury analysis Interleukin 1 receptors Interleukin-1beta - immunology Interleukin-1beta - metabolism Ischemia Ligands Macrophages Macrophages - immunology Macrophages - metabolism Male Membrane Proteins - metabolism Mice Molecular modelling Monoclonal antibodies Monocyte chemoattractant protein 1 Monocytes Monocytes - immunology Monocytes - metabolism multidisciplinary Multiomics Myocardial Infarction - immunology Myocardial Infarction - metabolism Myocardial Infarction - pathology Myocardium - immunology Myocardium - metabolism Myocardium - pathology Myofibroblasts - metabolism Myofibroblasts - pathology Peptide mapping Phenotypes Proteins Quality control Receptors, CCR2 - metabolism Science Science (multidisciplinary) Serine Endopeptidases - metabolism Signal Transduction Single-Cell Analysis Spatial analysis Transcriptomics |
title | Targeting immune–fibroblast cell communication in heart failure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20immune%E2%80%93fibroblast%20cell%20communication%20in%20heart%20failure&rft.jtitle=Nature%20(London)&rft.au=Amrute,%20Junedh%20M.&rft.date=2024-11-14&rft.volume=635&rft.issue=8038&rft.spage=423&rft.epage=433&rft.pages=423-433&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-08008-5&rft_dat=%3Cproquest_cross%3E3120059359%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132951688&rft_id=info:pmid/39443792&rfr_iscdi=true |