Loading…

Targeting immune–fibroblast cell communication in heart failure

Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction 1 , 2 . However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibros...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2024-11, Vol.635 (8038), p.423-433
Main Authors: Amrute, Junedh M., Luo, Xin, Penna, Vinay, Yang, Steven, Yamawaki, Tracy, Hayat, Sikander, Bredemeyer, Andrea, Jung, In-Hyuk, Kadyrov, Farid F., Heo, Gyu Seong, Venkatesan, Rajiu, Shi, Sally Yu, Parvathaneni, Alekhya, Koenig, Andrew L., Kuppe, Christoph, Baker, Candice, Luehmann, Hannah, Jones, Cameran, Kopecky, Benjamin, Zeng, Xue, Bleckwehl, Tore, Ma, Pan, Lee, Paul, Terada, Yuriko, Fu, Angela, Furtado, Milena, Kreisel, Daniel, Kovacs, Atilla, Stitziel, Nathan O., Jackson, Simon, Li, Chi-Ming, Liu, Yongjian, Rosenthal, Nadia A., Kramann, Rafael, Ason, Brandon, Lavine, Kory J.
Format: Article
Language:English
Subjects:
14
38
45
64
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3
container_end_page 433
container_issue 8038
container_start_page 423
container_title Nature (London)
container_volume 635
creator Amrute, Junedh M.
Luo, Xin
Penna, Vinay
Yang, Steven
Yamawaki, Tracy
Hayat, Sikander
Bredemeyer, Andrea
Jung, In-Hyuk
Kadyrov, Farid F.
Heo, Gyu Seong
Venkatesan, Rajiu
Shi, Sally Yu
Parvathaneni, Alekhya
Koenig, Andrew L.
Kuppe, Christoph
Baker, Candice
Luehmann, Hannah
Jones, Cameran
Kopecky, Benjamin
Zeng, Xue
Bleckwehl, Tore
Ma, Pan
Lee, Paul
Terada, Yuriko
Fu, Angela
Furtado, Milena
Kreisel, Daniel
Kovacs, Atilla
Stitziel, Nathan O.
Jackson, Simon
Li, Chi-Ming
Liu, Yongjian
Rosenthal, Nadia A.
Kramann, Rafael
Ason, Brandon
Lavine, Kory J.
description Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction 1 , 2 . However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis 3 , 4 . Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP + fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2 + monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function. A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis.
doi_str_mv 10.1038/s41586-024-08008-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120059359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120059359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmvtlWYo3ENzUdchkMjVlLjWZWbjzHXxDn8TUqQouhMAJ_N_5zzk_AKcIXiJI5FWkiEmeQ0xzKCGUOdsDU0QFzymXYh9MIcQySYRPwFGMawghQ4IegglRlBKh8BTMlyasXO_bVeabZmjdx9t75YvQFbWJfWZdXWe22yremt53bebb7NmZ0GeV8fUQ3DE4qEwd3cmuzsDTzfVycZc_PN7eL-YPucWM93mBOaaWV6RUJH0MNUQSQpXDXBqhmLKF4hYT7AwzSAiHCS9FYcsKc85UQWbgYvTdhO5lcLHXjY_b_UzruiFqgnC6T5H0ZuD8D7ruhtCm7RJFsGKIS5koPFI2dDEGV-lN8I0JrxpBvQ1YjwHrFLD-Cliz1HS2sx6KxpU_Ld-JJoCMQExSu3Lhd_Y_tp9-rYX2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3132951688</pqid></control><display><type>article</type><title>Targeting immune–fibroblast cell communication in heart failure</title><source>Nature</source><creator>Amrute, Junedh M. ; Luo, Xin ; Penna, Vinay ; Yang, Steven ; Yamawaki, Tracy ; Hayat, Sikander ; Bredemeyer, Andrea ; Jung, In-Hyuk ; Kadyrov, Farid F. ; Heo, Gyu Seong ; Venkatesan, Rajiu ; Shi, Sally Yu ; Parvathaneni, Alekhya ; Koenig, Andrew L. ; Kuppe, Christoph ; Baker, Candice ; Luehmann, Hannah ; Jones, Cameran ; Kopecky, Benjamin ; Zeng, Xue ; Bleckwehl, Tore ; Ma, Pan ; Lee, Paul ; Terada, Yuriko ; Fu, Angela ; Furtado, Milena ; Kreisel, Daniel ; Kovacs, Atilla ; Stitziel, Nathan O. ; Jackson, Simon ; Li, Chi-Ming ; Liu, Yongjian ; Rosenthal, Nadia A. ; Kramann, Rafael ; Ason, Brandon ; Lavine, Kory J.</creator><creatorcontrib>Amrute, Junedh M. ; Luo, Xin ; Penna, Vinay ; Yang, Steven ; Yamawaki, Tracy ; Hayat, Sikander ; Bredemeyer, Andrea ; Jung, In-Hyuk ; Kadyrov, Farid F. ; Heo, Gyu Seong ; Venkatesan, Rajiu ; Shi, Sally Yu ; Parvathaneni, Alekhya ; Koenig, Andrew L. ; Kuppe, Christoph ; Baker, Candice ; Luehmann, Hannah ; Jones, Cameran ; Kopecky, Benjamin ; Zeng, Xue ; Bleckwehl, Tore ; Ma, Pan ; Lee, Paul ; Terada, Yuriko ; Fu, Angela ; Furtado, Milena ; Kreisel, Daniel ; Kovacs, Atilla ; Stitziel, Nathan O. ; Jackson, Simon ; Li, Chi-Ming ; Liu, Yongjian ; Rosenthal, Nadia A. ; Kramann, Rafael ; Ason, Brandon ; Lavine, Kory J.</creatorcontrib><description>Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction 1 , 2 . However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis 3 , 4 . Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP + fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2 + monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function. A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-08008-5</identifier><identifier>PMID: 39443792</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/21 ; 13/31 ; 13/51 ; 14 ; 38 ; 45 ; 59/78 ; 631/250/256 ; 631/337/2019 ; 631/443/592/75/230 ; 64 ; 64/60 ; Animal models ; Animals ; CC chemokine receptors ; Cell Adhesion Molecules - metabolism ; Cell Communication - immunology ; Cell interactions ; Cell Lineage ; Chemokine receptors ; Chemokines ; Chromatin ; Chromatin - metabolism ; Congestive heart failure ; Coronary artery disease ; Cytokines ; Disease ; Disease Models, Animal ; Endopeptidases - metabolism ; Epigenetics ; Epitope Mapping ; Female ; Fibroblasts ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Fibrosis ; Gene expression ; Gene mapping ; Genetic analysis ; Heart diseases ; Heart failure ; Heart Failure - immunology ; Heart Failure - pathology ; Human performance ; Humanities and Social Sciences ; Humans ; IL-1β ; Inflammation ; Injury analysis ; Interleukin 1 receptors ; Interleukin-1beta - immunology ; Interleukin-1beta - metabolism ; Ischemia ; Ligands ; Macrophages ; Macrophages - immunology ; Macrophages - metabolism ; Male ; Membrane Proteins - metabolism ; Mice ; Molecular modelling ; Monoclonal antibodies ; Monocyte chemoattractant protein 1 ; Monocytes ; Monocytes - immunology ; Monocytes - metabolism ; multidisciplinary ; Multiomics ; Myocardial Infarction - immunology ; Myocardial Infarction - metabolism ; Myocardial Infarction - pathology ; Myocardium - immunology ; Myocardium - metabolism ; Myocardium - pathology ; Myofibroblasts - metabolism ; Myofibroblasts - pathology ; Peptide mapping ; Phenotypes ; Proteins ; Quality control ; Receptors, CCR2 - metabolism ; Science ; Science (multidisciplinary) ; Serine Endopeptidases - metabolism ; Signal Transduction ; Single-Cell Analysis ; Spatial analysis ; Transcriptomics</subject><ispartof>Nature (London), 2024-11, Vol.635 (8038), p.423-433</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Nov 14, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3</cites><orcidid>0000-0003-1116-0512 ; 0009-0008-7793-3008 ; 0000-0003-1948-9945 ; 0000-0003-4384-1267 ; 0000-0002-2976-1941 ; 0000-0002-7516-6772 ; 0000-0002-1118-1535 ; 0000-0003-2970-5998 ; 0000-0003-4597-9833 ; 0000-0002-6851-0168 ; 0000-0002-7599-7365 ; 0000-0002-9087-6254 ; 0000-0002-7716-5650 ; 0000-0002-9469-9590 ; 0000-0001-5919-8371 ; 0000-0002-4963-8211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39443792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Amrute, Junedh M.</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Penna, Vinay</creatorcontrib><creatorcontrib>Yang, Steven</creatorcontrib><creatorcontrib>Yamawaki, Tracy</creatorcontrib><creatorcontrib>Hayat, Sikander</creatorcontrib><creatorcontrib>Bredemeyer, Andrea</creatorcontrib><creatorcontrib>Jung, In-Hyuk</creatorcontrib><creatorcontrib>Kadyrov, Farid F.</creatorcontrib><creatorcontrib>Heo, Gyu Seong</creatorcontrib><creatorcontrib>Venkatesan, Rajiu</creatorcontrib><creatorcontrib>Shi, Sally Yu</creatorcontrib><creatorcontrib>Parvathaneni, Alekhya</creatorcontrib><creatorcontrib>Koenig, Andrew L.</creatorcontrib><creatorcontrib>Kuppe, Christoph</creatorcontrib><creatorcontrib>Baker, Candice</creatorcontrib><creatorcontrib>Luehmann, Hannah</creatorcontrib><creatorcontrib>Jones, Cameran</creatorcontrib><creatorcontrib>Kopecky, Benjamin</creatorcontrib><creatorcontrib>Zeng, Xue</creatorcontrib><creatorcontrib>Bleckwehl, Tore</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Lee, Paul</creatorcontrib><creatorcontrib>Terada, Yuriko</creatorcontrib><creatorcontrib>Fu, Angela</creatorcontrib><creatorcontrib>Furtado, Milena</creatorcontrib><creatorcontrib>Kreisel, Daniel</creatorcontrib><creatorcontrib>Kovacs, Atilla</creatorcontrib><creatorcontrib>Stitziel, Nathan O.</creatorcontrib><creatorcontrib>Jackson, Simon</creatorcontrib><creatorcontrib>Li, Chi-Ming</creatorcontrib><creatorcontrib>Liu, Yongjian</creatorcontrib><creatorcontrib>Rosenthal, Nadia A.</creatorcontrib><creatorcontrib>Kramann, Rafael</creatorcontrib><creatorcontrib>Ason, Brandon</creatorcontrib><creatorcontrib>Lavine, Kory J.</creatorcontrib><title>Targeting immune–fibroblast cell communication in heart failure</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction 1 , 2 . However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis 3 , 4 . Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP + fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2 + monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function. A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis.</description><subject>13/1</subject><subject>13/21</subject><subject>13/31</subject><subject>13/51</subject><subject>14</subject><subject>38</subject><subject>45</subject><subject>59/78</subject><subject>631/250/256</subject><subject>631/337/2019</subject><subject>631/443/592/75/230</subject><subject>64</subject><subject>64/60</subject><subject>Animal models</subject><subject>Animals</subject><subject>CC chemokine receptors</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Communication - immunology</subject><subject>Cell interactions</subject><subject>Cell Lineage</subject><subject>Chemokine receptors</subject><subject>Chemokines</subject><subject>Chromatin</subject><subject>Chromatin - metabolism</subject><subject>Congestive heart failure</subject><subject>Coronary artery disease</subject><subject>Cytokines</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Endopeptidases - metabolism</subject><subject>Epigenetics</subject><subject>Epitope Mapping</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Fibrosis</subject><subject>Gene expression</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Heart diseases</subject><subject>Heart failure</subject><subject>Heart Failure - immunology</subject><subject>Heart Failure - pathology</subject><subject>Human performance</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>IL-1β</subject><subject>Inflammation</subject><subject>Injury analysis</subject><subject>Interleukin 1 receptors</subject><subject>Interleukin-1beta - immunology</subject><subject>Interleukin-1beta - metabolism</subject><subject>Ischemia</subject><subject>Ligands</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Male</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Molecular modelling</subject><subject>Monoclonal antibodies</subject><subject>Monocyte chemoattractant protein 1</subject><subject>Monocytes</subject><subject>Monocytes - immunology</subject><subject>Monocytes - metabolism</subject><subject>multidisciplinary</subject><subject>Multiomics</subject><subject>Myocardial Infarction - immunology</subject><subject>Myocardial Infarction - metabolism</subject><subject>Myocardial Infarction - pathology</subject><subject>Myocardium - immunology</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Myofibroblasts - metabolism</subject><subject>Myofibroblasts - pathology</subject><subject>Peptide mapping</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Receptors, CCR2 - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Serine Endopeptidases - metabolism</subject><subject>Signal Transduction</subject><subject>Single-Cell Analysis</subject><subject>Spatial analysis</subject><subject>Transcriptomics</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMotlZfwIUMuHEzmvtlWYo3ENzUdchkMjVlLjWZWbjzHXxDn8TUqQouhMAJ_N_5zzk_AKcIXiJI5FWkiEmeQ0xzKCGUOdsDU0QFzymXYh9MIcQySYRPwFGMawghQ4IegglRlBKh8BTMlyasXO_bVeabZmjdx9t75YvQFbWJfWZdXWe22yremt53bebb7NmZ0GeV8fUQ3DE4qEwd3cmuzsDTzfVycZc_PN7eL-YPucWM93mBOaaWV6RUJH0MNUQSQpXDXBqhmLKF4hYT7AwzSAiHCS9FYcsKc85UQWbgYvTdhO5lcLHXjY_b_UzruiFqgnC6T5H0ZuD8D7ruhtCm7RJFsGKIS5koPFI2dDEGV-lN8I0JrxpBvQ1YjwHrFLD-Cliz1HS2sx6KxpU_Ld-JJoCMQExSu3Lhd_Y_tp9-rYX2</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Amrute, Junedh M.</creator><creator>Luo, Xin</creator><creator>Penna, Vinay</creator><creator>Yang, Steven</creator><creator>Yamawaki, Tracy</creator><creator>Hayat, Sikander</creator><creator>Bredemeyer, Andrea</creator><creator>Jung, In-Hyuk</creator><creator>Kadyrov, Farid F.</creator><creator>Heo, Gyu Seong</creator><creator>Venkatesan, Rajiu</creator><creator>Shi, Sally Yu</creator><creator>Parvathaneni, Alekhya</creator><creator>Koenig, Andrew L.</creator><creator>Kuppe, Christoph</creator><creator>Baker, Candice</creator><creator>Luehmann, Hannah</creator><creator>Jones, Cameran</creator><creator>Kopecky, Benjamin</creator><creator>Zeng, Xue</creator><creator>Bleckwehl, Tore</creator><creator>Ma, Pan</creator><creator>Lee, Paul</creator><creator>Terada, Yuriko</creator><creator>Fu, Angela</creator><creator>Furtado, Milena</creator><creator>Kreisel, Daniel</creator><creator>Kovacs, Atilla</creator><creator>Stitziel, Nathan O.</creator><creator>Jackson, Simon</creator><creator>Li, Chi-Ming</creator><creator>Liu, Yongjian</creator><creator>Rosenthal, Nadia A.</creator><creator>Kramann, Rafael</creator><creator>Ason, Brandon</creator><creator>Lavine, Kory J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1116-0512</orcidid><orcidid>https://orcid.org/0009-0008-7793-3008</orcidid><orcidid>https://orcid.org/0000-0003-1948-9945</orcidid><orcidid>https://orcid.org/0000-0003-4384-1267</orcidid><orcidid>https://orcid.org/0000-0002-2976-1941</orcidid><orcidid>https://orcid.org/0000-0002-7516-6772</orcidid><orcidid>https://orcid.org/0000-0002-1118-1535</orcidid><orcidid>https://orcid.org/0000-0003-2970-5998</orcidid><orcidid>https://orcid.org/0000-0003-4597-9833</orcidid><orcidid>https://orcid.org/0000-0002-6851-0168</orcidid><orcidid>https://orcid.org/0000-0002-7599-7365</orcidid><orcidid>https://orcid.org/0000-0002-9087-6254</orcidid><orcidid>https://orcid.org/0000-0002-7716-5650</orcidid><orcidid>https://orcid.org/0000-0002-9469-9590</orcidid><orcidid>https://orcid.org/0000-0001-5919-8371</orcidid><orcidid>https://orcid.org/0000-0002-4963-8211</orcidid></search><sort><creationdate>20241114</creationdate><title>Targeting immune–fibroblast cell communication in heart failure</title><author>Amrute, Junedh M. ; Luo, Xin ; Penna, Vinay ; Yang, Steven ; Yamawaki, Tracy ; Hayat, Sikander ; Bredemeyer, Andrea ; Jung, In-Hyuk ; Kadyrov, Farid F. ; Heo, Gyu Seong ; Venkatesan, Rajiu ; Shi, Sally Yu ; Parvathaneni, Alekhya ; Koenig, Andrew L. ; Kuppe, Christoph ; Baker, Candice ; Luehmann, Hannah ; Jones, Cameran ; Kopecky, Benjamin ; Zeng, Xue ; Bleckwehl, Tore ; Ma, Pan ; Lee, Paul ; Terada, Yuriko ; Fu, Angela ; Furtado, Milena ; Kreisel, Daniel ; Kovacs, Atilla ; Stitziel, Nathan O. ; Jackson, Simon ; Li, Chi-Ming ; Liu, Yongjian ; Rosenthal, Nadia A. ; Kramann, Rafael ; Ason, Brandon ; Lavine, Kory J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>13/21</topic><topic>13/31</topic><topic>13/51</topic><topic>14</topic><topic>38</topic><topic>45</topic><topic>59/78</topic><topic>631/250/256</topic><topic>631/337/2019</topic><topic>631/443/592/75/230</topic><topic>64</topic><topic>64/60</topic><topic>Animal models</topic><topic>Animals</topic><topic>CC chemokine receptors</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Communication - immunology</topic><topic>Cell interactions</topic><topic>Cell Lineage</topic><topic>Chemokine receptors</topic><topic>Chemokines</topic><topic>Chromatin</topic><topic>Chromatin - metabolism</topic><topic>Congestive heart failure</topic><topic>Coronary artery disease</topic><topic>Cytokines</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Endopeptidases - metabolism</topic><topic>Epigenetics</topic><topic>Epitope Mapping</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Fibrosis</topic><topic>Gene expression</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Heart diseases</topic><topic>Heart failure</topic><topic>Heart Failure - immunology</topic><topic>Heart Failure - pathology</topic><topic>Human performance</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>IL-1β</topic><topic>Inflammation</topic><topic>Injury analysis</topic><topic>Interleukin 1 receptors</topic><topic>Interleukin-1beta - immunology</topic><topic>Interleukin-1beta - metabolism</topic><topic>Ischemia</topic><topic>Ligands</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Male</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Molecular modelling</topic><topic>Monoclonal antibodies</topic><topic>Monocyte chemoattractant protein 1</topic><topic>Monocytes</topic><topic>Monocytes - immunology</topic><topic>Monocytes - metabolism</topic><topic>multidisciplinary</topic><topic>Multiomics</topic><topic>Myocardial Infarction - immunology</topic><topic>Myocardial Infarction - metabolism</topic><topic>Myocardial Infarction - pathology</topic><topic>Myocardium - immunology</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Myofibroblasts - metabolism</topic><topic>Myofibroblasts - pathology</topic><topic>Peptide mapping</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Receptors, CCR2 - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Serine Endopeptidases - metabolism</topic><topic>Signal Transduction</topic><topic>Single-Cell Analysis</topic><topic>Spatial analysis</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amrute, Junedh M.</creatorcontrib><creatorcontrib>Luo, Xin</creatorcontrib><creatorcontrib>Penna, Vinay</creatorcontrib><creatorcontrib>Yang, Steven</creatorcontrib><creatorcontrib>Yamawaki, Tracy</creatorcontrib><creatorcontrib>Hayat, Sikander</creatorcontrib><creatorcontrib>Bredemeyer, Andrea</creatorcontrib><creatorcontrib>Jung, In-Hyuk</creatorcontrib><creatorcontrib>Kadyrov, Farid F.</creatorcontrib><creatorcontrib>Heo, Gyu Seong</creatorcontrib><creatorcontrib>Venkatesan, Rajiu</creatorcontrib><creatorcontrib>Shi, Sally Yu</creatorcontrib><creatorcontrib>Parvathaneni, Alekhya</creatorcontrib><creatorcontrib>Koenig, Andrew L.</creatorcontrib><creatorcontrib>Kuppe, Christoph</creatorcontrib><creatorcontrib>Baker, Candice</creatorcontrib><creatorcontrib>Luehmann, Hannah</creatorcontrib><creatorcontrib>Jones, Cameran</creatorcontrib><creatorcontrib>Kopecky, Benjamin</creatorcontrib><creatorcontrib>Zeng, Xue</creatorcontrib><creatorcontrib>Bleckwehl, Tore</creatorcontrib><creatorcontrib>Ma, Pan</creatorcontrib><creatorcontrib>Lee, Paul</creatorcontrib><creatorcontrib>Terada, Yuriko</creatorcontrib><creatorcontrib>Fu, Angela</creatorcontrib><creatorcontrib>Furtado, Milena</creatorcontrib><creatorcontrib>Kreisel, Daniel</creatorcontrib><creatorcontrib>Kovacs, Atilla</creatorcontrib><creatorcontrib>Stitziel, Nathan O.</creatorcontrib><creatorcontrib>Jackson, Simon</creatorcontrib><creatorcontrib>Li, Chi-Ming</creatorcontrib><creatorcontrib>Liu, Yongjian</creatorcontrib><creatorcontrib>Rosenthal, Nadia A.</creatorcontrib><creatorcontrib>Kramann, Rafael</creatorcontrib><creatorcontrib>Ason, Brandon</creatorcontrib><creatorcontrib>Lavine, Kory J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amrute, Junedh M.</au><au>Luo, Xin</au><au>Penna, Vinay</au><au>Yang, Steven</au><au>Yamawaki, Tracy</au><au>Hayat, Sikander</au><au>Bredemeyer, Andrea</au><au>Jung, In-Hyuk</au><au>Kadyrov, Farid F.</au><au>Heo, Gyu Seong</au><au>Venkatesan, Rajiu</au><au>Shi, Sally Yu</au><au>Parvathaneni, Alekhya</au><au>Koenig, Andrew L.</au><au>Kuppe, Christoph</au><au>Baker, Candice</au><au>Luehmann, Hannah</au><au>Jones, Cameran</au><au>Kopecky, Benjamin</au><au>Zeng, Xue</au><au>Bleckwehl, Tore</au><au>Ma, Pan</au><au>Lee, Paul</au><au>Terada, Yuriko</au><au>Fu, Angela</au><au>Furtado, Milena</au><au>Kreisel, Daniel</au><au>Kovacs, Atilla</au><au>Stitziel, Nathan O.</au><au>Jackson, Simon</au><au>Li, Chi-Ming</au><au>Liu, Yongjian</au><au>Rosenthal, Nadia A.</au><au>Kramann, Rafael</au><au>Ason, Brandon</au><au>Lavine, Kory J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting immune–fibroblast cell communication in heart failure</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-11-14</date><risdate>2024</risdate><volume>635</volume><issue>8038</issue><spage>423</spage><epage>433</epage><pages>423-433</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction 1 , 2 . However, the molecular mechanisms driving immune–fibroblast cell communication in human cardiac disease remain unexplored and there are at present no approved treatments that directly target cardiac fibrosis 3 , 4 . Here we performed multiomic single-cell gene expression, epitope mapping and chromatin accessibility profiling in 45 healthy donor, acutely infarcted and chronically failing human hearts. We identified a disease-associated fibroblast trajectory that diverged into distinct populations reminiscent of myofibroblasts and matrifibrocytes, the latter expressing fibroblast activator protein (FAP) and periostin (POSTN). Genetic lineage tracing of FAP + fibroblasts in vivo showed that they contribute to the POSTN lineage but not the myofibroblast lineage. We assessed the applicability of experimental systems to model cardiac fibroblasts and demonstrated that three different in vivo mouse models of cardiac injury were superior compared with cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand–receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin-1β (IL-1β) signalling drove the emergence of FAP/POSTN fibroblasts within spatially defined niches. In vivo, we deleted the IL-1 receptor on fibroblasts and the IL-1β ligand in CCR2 + monocytes and macrophages, and inhibited IL-1β signalling using a monoclonal antibody, and showed reduced FAP/POSTN fibroblasts, diminished myocardial fibrosis and improved cardiac function. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and preserve organ function. A fibroblast lineage marked by FAP gives rise to POSTN-expressing fibroblasts resembling matrifibrocytes and IL-1β regulates FAP/POSTN fibroblast specification by directly signalling to cardiac fibroblasts, highlighting a role for immunomodulators in targeting cardiac fibrosis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39443792</pmid><doi>10.1038/s41586-024-08008-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1116-0512</orcidid><orcidid>https://orcid.org/0009-0008-7793-3008</orcidid><orcidid>https://orcid.org/0000-0003-1948-9945</orcidid><orcidid>https://orcid.org/0000-0003-4384-1267</orcidid><orcidid>https://orcid.org/0000-0002-2976-1941</orcidid><orcidid>https://orcid.org/0000-0002-7516-6772</orcidid><orcidid>https://orcid.org/0000-0002-1118-1535</orcidid><orcidid>https://orcid.org/0000-0003-2970-5998</orcidid><orcidid>https://orcid.org/0000-0003-4597-9833</orcidid><orcidid>https://orcid.org/0000-0002-6851-0168</orcidid><orcidid>https://orcid.org/0000-0002-7599-7365</orcidid><orcidid>https://orcid.org/0000-0002-9087-6254</orcidid><orcidid>https://orcid.org/0000-0002-7716-5650</orcidid><orcidid>https://orcid.org/0000-0002-9469-9590</orcidid><orcidid>https://orcid.org/0000-0001-5919-8371</orcidid><orcidid>https://orcid.org/0000-0002-4963-8211</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-11, Vol.635 (8038), p.423-433
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_proquest_miscellaneous_3120059359
source Nature
subjects 13/1
13/21
13/31
13/51
14
38
45
59/78
631/250/256
631/337/2019
631/443/592/75/230
64
64/60
Animal models
Animals
CC chemokine receptors
Cell Adhesion Molecules - metabolism
Cell Communication - immunology
Cell interactions
Cell Lineage
Chemokine receptors
Chemokines
Chromatin
Chromatin - metabolism
Congestive heart failure
Coronary artery disease
Cytokines
Disease
Disease Models, Animal
Endopeptidases - metabolism
Epigenetics
Epitope Mapping
Female
Fibroblasts
Fibroblasts - metabolism
Fibroblasts - pathology
Fibrosis
Gene expression
Gene mapping
Genetic analysis
Heart diseases
Heart failure
Heart Failure - immunology
Heart Failure - pathology
Human performance
Humanities and Social Sciences
Humans
IL-1β
Inflammation
Injury analysis
Interleukin 1 receptors
Interleukin-1beta - immunology
Interleukin-1beta - metabolism
Ischemia
Ligands
Macrophages
Macrophages - immunology
Macrophages - metabolism
Male
Membrane Proteins - metabolism
Mice
Molecular modelling
Monoclonal antibodies
Monocyte chemoattractant protein 1
Monocytes
Monocytes - immunology
Monocytes - metabolism
multidisciplinary
Multiomics
Myocardial Infarction - immunology
Myocardial Infarction - metabolism
Myocardial Infarction - pathology
Myocardium - immunology
Myocardium - metabolism
Myocardium - pathology
Myofibroblasts - metabolism
Myofibroblasts - pathology
Peptide mapping
Phenotypes
Proteins
Quality control
Receptors, CCR2 - metabolism
Science
Science (multidisciplinary)
Serine Endopeptidases - metabolism
Signal Transduction
Single-Cell Analysis
Spatial analysis
Transcriptomics
title Targeting immune–fibroblast cell communication in heart failure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20immune%E2%80%93fibroblast%20cell%20communication%20in%20heart%20failure&rft.jtitle=Nature%20(London)&rft.au=Amrute,%20Junedh%20M.&rft.date=2024-11-14&rft.volume=635&rft.issue=8038&rft.spage=423&rft.epage=433&rft.pages=423-433&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-08008-5&rft_dat=%3Cproquest_cross%3E3120059359%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-b2624c6f3d9324ca4a383349e268a7959cb96c232ea5a177e236d7bcdf26659b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3132951688&rft_id=info:pmid/39443792&rfr_iscdi=true