Loading…

Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers

Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The microp...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-12, Vol.36 (49), p.e2408982-n/a
Main Authors: Liu, Dong, Wei, Xiaotian, Lu, Jianxi, Wang, Xin, Liu, Kai, Cai, Yaohai, Qi, Yingwei, Wang, Lei, Ai, Haoqiang, Wang, Zhenbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463
container_end_page n/a
container_issue 49
container_start_page e2408982
container_title Advanced materials (Weinheim)
container_volume 36
creator Liu, Dong
Wei, Xiaotian
Lu, Jianxi
Wang, Xin
Liu, Kai
Cai, Yaohai
Qi, Yingwei
Wang, Lei
Ai, Haoqiang
Wang, Zhenbo
description Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy. Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis.
doi_str_mv 10.1002/adma.202408982
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120595226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120595226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463</originalsourceid><addsrcrecordid>eNqFkT9v1DAYhy1ERY_CyogssbDk-vpfLh5PdwdUugqJo3PkOA648iXBdnTKxshYdeH79ZPU6ZUisTB5eX6PX-lB6A2BOQGg56reqzkFyqGQBX2GZkRQknGQ4jmagWQikzkvTtHLEK4BQOaQv0CnTHIuRQ4z9HvTNFZb00as2hpfuehViKpyBu-MOqhoPN44o6Pv3BhswCrii7YeQvRWObwavJ-2a9MGG0d8sPE73iW4_YYvTVTu7ufNbuj7zk-zJFM62q59-Gs9TAJ39-s2QV9Mb5yzabZVo_HhFTpplAvm9eN7hq4-bL6uPmXbzx8vVsttpqkoaJYzsqjNouK6AQ01KwpSSSEk4VVVAGguGSkYobJWNTG5klpQTYAtGKtYw3N2ht4fvb3vfgwmxHJvg06nqNZ0QyjTFoQUlE7ou3_Q627wbbouUTzVSFKWqPmR0r4LwZum7L3dKz-WBMopWTklK5-SpcHbR-1Q7U39hP9plAB5BA7WmfE_unK5vlz-ld8D6MmmyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141007333</pqid></control><display><type>article</type><title>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</title><source>Wiley</source><creator>Liu, Dong ; Wei, Xiaotian ; Lu, Jianxi ; Wang, Xin ; Liu, Kai ; Cai, Yaohai ; Qi, Yingwei ; Wang, Lei ; Ai, Haoqiang ; Wang, Zhenbo</creator><creatorcontrib>Liu, Dong ; Wei, Xiaotian ; Lu, Jianxi ; Wang, Xin ; Liu, Kai ; Cai, Yaohai ; Qi, Yingwei ; Wang, Lei ; Ai, Haoqiang ; Wang, Zhenbo</creatorcontrib><description>Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy. Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202408982</identifier><identifier>PMID: 39449560</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; direct seawater electrolysis ; dual Cl− repelling layers ; electrocatalyst ; Electrocatalysts ; Electrolysis ; Electronic structure ; Energy technology ; hydrogen evolution reaction ; Hydrogen production ; Mass transfer ; metal‐support interaction ; Oxidation ; oxygen evolution reaction ; Seawater</subject><ispartof>Advanced materials (Weinheim), 2024-12, Vol.36 (49), p.e2408982-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463</cites><orcidid>0000-0001-9388-1481 ; 0000-0002-2313-2095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39449560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Wei, Xiaotian</creatorcontrib><creatorcontrib>Lu, Jianxi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Cai, Yaohai</creatorcontrib><creatorcontrib>Qi, Yingwei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ai, Haoqiang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><title>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy. Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>direct seawater electrolysis</subject><subject>dual Cl− repelling layers</subject><subject>electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Energy technology</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen production</subject><subject>Mass transfer</subject><subject>metal‐support interaction</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Seawater</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT9v1DAYhy1ERY_CyogssbDk-vpfLh5PdwdUugqJo3PkOA648iXBdnTKxshYdeH79ZPU6ZUisTB5eX6PX-lB6A2BOQGg56reqzkFyqGQBX2GZkRQknGQ4jmagWQikzkvTtHLEK4BQOaQv0CnTHIuRQ4z9HvTNFZb00as2hpfuehViKpyBu-MOqhoPN44o6Pv3BhswCrii7YeQvRWObwavJ-2a9MGG0d8sPE73iW4_YYvTVTu7ufNbuj7zk-zJFM62q59-Gs9TAJ39-s2QV9Mb5yzabZVo_HhFTpplAvm9eN7hq4-bL6uPmXbzx8vVsttpqkoaJYzsqjNouK6AQ01KwpSSSEk4VVVAGguGSkYobJWNTG5klpQTYAtGKtYw3N2ht4fvb3vfgwmxHJvg06nqNZ0QyjTFoQUlE7ou3_Q627wbbouUTzVSFKWqPmR0r4LwZum7L3dKz-WBMopWTklK5-SpcHbR-1Q7U39hP9plAB5BA7WmfE_unK5vlz-ld8D6MmmyQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Liu, Dong</creator><creator>Wei, Xiaotian</creator><creator>Lu, Jianxi</creator><creator>Wang, Xin</creator><creator>Liu, Kai</creator><creator>Cai, Yaohai</creator><creator>Qi, Yingwei</creator><creator>Wang, Lei</creator><creator>Ai, Haoqiang</creator><creator>Wang, Zhenbo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9388-1481</orcidid><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid></search><sort><creationdate>202412</creationdate><title>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</title><author>Liu, Dong ; Wei, Xiaotian ; Lu, Jianxi ; Wang, Xin ; Liu, Kai ; Cai, Yaohai ; Qi, Yingwei ; Wang, Lei ; Ai, Haoqiang ; Wang, Zhenbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>direct seawater electrolysis</topic><topic>dual Cl− repelling layers</topic><topic>electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Energy technology</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen production</topic><topic>Mass transfer</topic><topic>metal‐support interaction</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Seawater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Wei, Xiaotian</creatorcontrib><creatorcontrib>Lu, Jianxi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Cai, Yaohai</creatorcontrib><creatorcontrib>Qi, Yingwei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ai, Haoqiang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong</au><au>Wei, Xiaotian</au><au>Lu, Jianxi</au><au>Wang, Xin</au><au>Liu, Kai</au><au>Cai, Yaohai</au><au>Qi, Yingwei</au><au>Wang, Lei</au><au>Ai, Haoqiang</au><au>Wang, Zhenbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-12</date><risdate>2024</risdate><volume>36</volume><issue>49</issue><spage>e2408982</spage><epage>n/a</epage><pages>e2408982-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy. Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39449560</pmid><doi>10.1002/adma.202408982</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9388-1481</orcidid><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-12, Vol.36 (49), p.e2408982-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_3120595226
source Wiley
subjects Catalysts
Catalytic activity
direct seawater electrolysis
dual Cl− repelling layers
electrocatalyst
Electrocatalysts
Electrolysis
Electronic structure
Energy technology
hydrogen evolution reaction
Hydrogen production
Mass transfer
metal‐support interaction
Oxidation
oxygen evolution reaction
Seawater
title Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Ultrastable%20Seawater%20Electrolysis%20at%20Industrial%20Current%20Density%20with%20Strong%20Metal%E2%80%90Support%20Interaction%20and%20Dual%20Cl%E2%88%92%E2%80%90Repelling%20Layers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Dong&rft.date=2024-12&rft.volume=36&rft.issue=49&rft.spage=e2408982&rft.epage=n/a&rft.pages=e2408982-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202408982&rft_dat=%3Cproquest_cross%3E3120595226%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141007333&rft_id=info:pmid/39449560&rfr_iscdi=true