Loading…
Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers
Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The microp...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-12, Vol.36 (49), p.e2408982-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463 |
container_end_page | n/a |
container_issue | 49 |
container_start_page | e2408982 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Liu, Dong Wei, Xiaotian Lu, Jianxi Wang, Xin Liu, Kai Cai, Yaohai Qi, Yingwei Wang, Lei Ai, Haoqiang Wang, Zhenbo |
description | Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy.
Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis. |
doi_str_mv | 10.1002/adma.202408982 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120595226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3120595226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463</originalsourceid><addsrcrecordid>eNqFkT9v1DAYhy1ERY_CyogssbDk-vpfLh5PdwdUugqJo3PkOA648iXBdnTKxshYdeH79ZPU6ZUisTB5eX6PX-lB6A2BOQGg56reqzkFyqGQBX2GZkRQknGQ4jmagWQikzkvTtHLEK4BQOaQv0CnTHIuRQ4z9HvTNFZb00as2hpfuehViKpyBu-MOqhoPN44o6Pv3BhswCrii7YeQvRWObwavJ-2a9MGG0d8sPE73iW4_YYvTVTu7ufNbuj7zk-zJFM62q59-Gs9TAJ39-s2QV9Mb5yzabZVo_HhFTpplAvm9eN7hq4-bL6uPmXbzx8vVsttpqkoaJYzsqjNouK6AQ01KwpSSSEk4VVVAGguGSkYobJWNTG5klpQTYAtGKtYw3N2ht4fvb3vfgwmxHJvg06nqNZ0QyjTFoQUlE7ou3_Q627wbbouUTzVSFKWqPmR0r4LwZum7L3dKz-WBMopWTklK5-SpcHbR-1Q7U39hP9plAB5BA7WmfE_unK5vlz-ld8D6MmmyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141007333</pqid></control><display><type>article</type><title>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</title><source>Wiley</source><creator>Liu, Dong ; Wei, Xiaotian ; Lu, Jianxi ; Wang, Xin ; Liu, Kai ; Cai, Yaohai ; Qi, Yingwei ; Wang, Lei ; Ai, Haoqiang ; Wang, Zhenbo</creator><creatorcontrib>Liu, Dong ; Wei, Xiaotian ; Lu, Jianxi ; Wang, Xin ; Liu, Kai ; Cai, Yaohai ; Qi, Yingwei ; Wang, Lei ; Ai, Haoqiang ; Wang, Zhenbo</creatorcontrib><description>Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy.
Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202408982</identifier><identifier>PMID: 39449560</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; direct seawater electrolysis ; dual Cl− repelling layers ; electrocatalyst ; Electrocatalysts ; Electrolysis ; Electronic structure ; Energy technology ; hydrogen evolution reaction ; Hydrogen production ; Mass transfer ; metal‐support interaction ; Oxidation ; oxygen evolution reaction ; Seawater</subject><ispartof>Advanced materials (Weinheim), 2024-12, Vol.36 (49), p.e2408982-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463</cites><orcidid>0000-0001-9388-1481 ; 0000-0002-2313-2095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39449560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Wei, Xiaotian</creatorcontrib><creatorcontrib>Lu, Jianxi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Cai, Yaohai</creatorcontrib><creatorcontrib>Qi, Yingwei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ai, Haoqiang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><title>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy.
Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>direct seawater electrolysis</subject><subject>dual Cl− repelling layers</subject><subject>electrocatalyst</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electronic structure</subject><subject>Energy technology</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen production</subject><subject>Mass transfer</subject><subject>metal‐support interaction</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Seawater</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT9v1DAYhy1ERY_CyogssbDk-vpfLh5PdwdUugqJo3PkOA648iXBdnTKxshYdeH79ZPU6ZUisTB5eX6PX-lB6A2BOQGg56reqzkFyqGQBX2GZkRQknGQ4jmagWQikzkvTtHLEK4BQOaQv0CnTHIuRQ4z9HvTNFZb00as2hpfuehViKpyBu-MOqhoPN44o6Pv3BhswCrii7YeQvRWObwavJ-2a9MGG0d8sPE73iW4_YYvTVTu7ufNbuj7zk-zJFM62q59-Gs9TAJ39-s2QV9Mb5yzabZVo_HhFTpplAvm9eN7hq4-bL6uPmXbzx8vVsttpqkoaJYzsqjNouK6AQ01KwpSSSEk4VVVAGguGSkYobJWNTG5klpQTYAtGKtYw3N2ht4fvb3vfgwmxHJvg06nqNZ0QyjTFoQUlE7ou3_Q627wbbouUTzVSFKWqPmR0r4LwZum7L3dKz-WBMopWTklK5-SpcHbR-1Q7U39hP9plAB5BA7WmfE_unK5vlz-ld8D6MmmyQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Liu, Dong</creator><creator>Wei, Xiaotian</creator><creator>Lu, Jianxi</creator><creator>Wang, Xin</creator><creator>Liu, Kai</creator><creator>Cai, Yaohai</creator><creator>Qi, Yingwei</creator><creator>Wang, Lei</creator><creator>Ai, Haoqiang</creator><creator>Wang, Zhenbo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9388-1481</orcidid><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid></search><sort><creationdate>202412</creationdate><title>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</title><author>Liu, Dong ; Wei, Xiaotian ; Lu, Jianxi ; Wang, Xin ; Liu, Kai ; Cai, Yaohai ; Qi, Yingwei ; Wang, Lei ; Ai, Haoqiang ; Wang, Zhenbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>direct seawater electrolysis</topic><topic>dual Cl− repelling layers</topic><topic>electrocatalyst</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electronic structure</topic><topic>Energy technology</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen production</topic><topic>Mass transfer</topic><topic>metal‐support interaction</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Seawater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Wei, Xiaotian</creatorcontrib><creatorcontrib>Lu, Jianxi</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Cai, Yaohai</creatorcontrib><creatorcontrib>Qi, Yingwei</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Ai, Haoqiang</creatorcontrib><creatorcontrib>Wang, Zhenbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong</au><au>Wei, Xiaotian</au><au>Lu, Jianxi</au><au>Wang, Xin</au><au>Liu, Kai</au><au>Cai, Yaohai</au><au>Qi, Yingwei</au><au>Wang, Lei</au><au>Ai, Haoqiang</au><au>Wang, Zhenbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-12</date><risdate>2024</risdate><volume>36</volume><issue>49</issue><spage>e2408982</spage><epage>n/a</epage><pages>e2408982-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Direct seawater electrolysis is emerging as a promising renewable energy technology for large‐scale hydrogen generation. The development of Os‐Ni4Mo/MoO2 micropillar arrays with strong metal‐support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl− repelling layer is constructed by electrostatic force to safeguard active sites against Cl− attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ‐formed MoO42− layer. As a result, the Os‐Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy.
Introducing a novel Os‐Ni4Mo/MoO2 micropillar catalyst with strong metal‐support interaction, this work presents a high‐performance bifunctional electrocatalyst for seawater electrolysis. It highlights the innovative dual Cl−‐repelling layer to suppress chloride oxidation, significantly enhancing stability and catalytic activity, representing a revolutionary advancement in catalyst development for seawater electrolysis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39449560</pmid><doi>10.1002/adma.202408982</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9388-1481</orcidid><orcidid>https://orcid.org/0000-0002-2313-2095</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-12, Vol.36 (49), p.e2408982-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_3120595226 |
source | Wiley |
subjects | Catalysts Catalytic activity direct seawater electrolysis dual Cl− repelling layers electrocatalyst Electrocatalysts Electrolysis Electronic structure Energy technology hydrogen evolution reaction Hydrogen production Mass transfer metal‐support interaction Oxidation oxygen evolution reaction Seawater |
title | Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal‐Support Interaction and Dual Cl−‐Repelling Layers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20Ultrastable%20Seawater%20Electrolysis%20at%20Industrial%20Current%20Density%20with%20Strong%20Metal%E2%80%90Support%20Interaction%20and%20Dual%20Cl%E2%88%92%E2%80%90Repelling%20Layers&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Liu,%20Dong&rft.date=2024-12&rft.volume=36&rft.issue=49&rft.spage=e2408982&rft.epage=n/a&rft.pages=e2408982-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202408982&rft_dat=%3Cproquest_cross%3E3120595226%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2582-6317de7b4cf0c0d3881b955914bb800c493183129dad1e6a9c52c103733b3f463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141007333&rft_id=info:pmid/39449560&rfr_iscdi=true |