Loading…

Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure

While albumin-coated microbubbles are routine contrast agents for ultrasound imaging, their short duration of contrast enhancement limits their use, yet can be improved by incorporating protein-copolymer hybrids into microbubble shells. The incorporation of N-vinyl-2-pyrrolidone and acrylic acid cop...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials advances 2025-01, Vol.166, p.214074, Article 214074
Main Authors: Estifeeva, Tatiana M., Nechaeva, Anna M., Le-Deygen, Irina M., Adelyanov, Artem M., Grigoryan, Ilya V., Petrovskii, Vladislav S., Potemkin, Igor I., Abramov, Alexander A., Prosvirnin, Anton V., Sencha, Ekaterina A., Borozdenko, Denis A., Barmin, Roman A., Mezhuev, Yaroslav O., Gorin, Dmitry A., Rudakovskaya, Polina G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c241t-13b694872d7b4237807ec2545fd4c7e9dcf68e3bfe894e0bf860bbb9540022733
container_end_page
container_issue
container_start_page 214074
container_title Biomaterials advances
container_volume 166
creator Estifeeva, Tatiana M.
Nechaeva, Anna M.
Le-Deygen, Irina M.
Adelyanov, Artem M.
Grigoryan, Ilya V.
Petrovskii, Vladislav S.
Potemkin, Igor I.
Abramov, Alexander A.
Prosvirnin, Anton V.
Sencha, Ekaterina A.
Borozdenko, Denis A.
Barmin, Roman A.
Mezhuev, Yaroslav O.
Gorin, Dmitry A.
Rudakovskaya, Polina G.
description While albumin-coated microbubbles are routine contrast agents for ultrasound imaging, their short duration of contrast enhancement limits their use, yet can be improved by incorporating protein-copolymer hybrids into microbubble shells. The incorporation of N-vinyl-2-pyrrolidone and acrylic acid copolymer (P(VP–AA)) has been shown to enhance the performance of bovine serum albumin (BSA)-coated microbubbles. However, the impact of the copolymer structural properties on key microbubble characteristics (i.e., concentration, mean diameter and acoustic response) remains poorly understood. Therefore, we hypothesize that the copolymer structure affects its capacity to form micelle-like nanoaggregates, protein-copolymer hybrids, and microbubble shells, ultimately influencing the physicochemical and acoustic properties of the microbubbles. Here we evaluate the production and performance of BSA@P(VP–AA) microbubbles synthesized using a series of P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weight cutoffs between 3.5 and 15 kDa. Both simulation and experimental data demonstrate that interactions between BSA and the copolymers significantly influence the performance of the resulting microbubbles across the library of 60 formulations. The introduction of –C8H17 terminated copolymers into microbubble shells resulted in up to 200-fold higher concentration, 7-fold greater acoustic response, and 5-fold longer ultrasound contrast enhancement compared to plain BSA microbubbles. The enhanced acoustic performance was sustained during in vivo cardiac ultrasound imaging, without altering liver accumulation after copolymer introduction. These findings underscore how optimizing copolymer structure (specifically the terminal end group and molecular weight) can tailor the formation and performance of protein-copolymer-coated microbubbles, offering valuable insights for designing ultrasound contrast agents. [Display omitted] •Microbubble (MB) synthesis and ultrasound (US) response can be improved by incorporating protein-copolymer hybrids into MB.•P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weights between 3.5 and 15 kDa were synthesized.•The P(VP–AA) copolymer structure influences its ability to form nanoaggregates, protein-copolymer hybrids, and MB shells.•C8H17-bearing P(VP–AA) copolymers yielded MB with 200-fold higher concentration, and 7-fold greater US signal compared to BSA MB.•Improved acoustic performance was maintained durin
doi_str_mv 10.1016/j.bioadv.2024.214074
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3120597178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2772950824003170</els_id><sourcerecordid>3120597178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-13b694872d7b4237807ec2545fd4c7e9dcf68e3bfe894e0bf860bbb9540022733</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoSUKSf1CKj-nBW33Zsi-FEvoFgV6Ss7Ck8UaLLG1H1oL_fb04LT31NHN43hneh5B3jO4YZe3Hw874NLjTjlMud5xJquQFueZK8bpvaPfmn_2K3OV8oJQKLtqmEZfkSvRSKi66a1Kew4xDTiW66ohpBh9rm44pLBNgNXmLyRRjAlTBGxxwqSDufQRAH_fV_IKp7F-qM39_8nEJxwUxBe9ShPVOPVhcgrfVYL37UOUZi50Lwi15Ow4hw93rvCHPX788PXyvH39--_Hw-bG2XLK5ZsK0vewUd8pILlRHFVjeyGZ00ironR3bDoQZoeslUDN2LTXG9I2klHMlxA253-6u1X4VyLOefLYQwhAhlawF47TpFVPdisoNXRvnjDDqI_ppLawZ1Wfn-qA35_rsXG_O19j71w_FTOD-hv4YXoFPGwBrz5MH1Nl6iBacR7Czdsn__8NvICaXMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120597178</pqid></control><display><type>article</type><title>Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure</title><source>ScienceDirect (Online service)</source><creator>Estifeeva, Tatiana M. ; Nechaeva, Anna M. ; Le-Deygen, Irina M. ; Adelyanov, Artem M. ; Grigoryan, Ilya V. ; Petrovskii, Vladislav S. ; Potemkin, Igor I. ; Abramov, Alexander A. ; Prosvirnin, Anton V. ; Sencha, Ekaterina A. ; Borozdenko, Denis A. ; Barmin, Roman A. ; Mezhuev, Yaroslav O. ; Gorin, Dmitry A. ; Rudakovskaya, Polina G.</creator><creatorcontrib>Estifeeva, Tatiana M. ; Nechaeva, Anna M. ; Le-Deygen, Irina M. ; Adelyanov, Artem M. ; Grigoryan, Ilya V. ; Petrovskii, Vladislav S. ; Potemkin, Igor I. ; Abramov, Alexander A. ; Prosvirnin, Anton V. ; Sencha, Ekaterina A. ; Borozdenko, Denis A. ; Barmin, Roman A. ; Mezhuev, Yaroslav O. ; Gorin, Dmitry A. ; Rudakovskaya, Polina G.</creatorcontrib><description>While albumin-coated microbubbles are routine contrast agents for ultrasound imaging, their short duration of contrast enhancement limits their use, yet can be improved by incorporating protein-copolymer hybrids into microbubble shells. The incorporation of N-vinyl-2-pyrrolidone and acrylic acid copolymer (P(VP–AA)) has been shown to enhance the performance of bovine serum albumin (BSA)-coated microbubbles. However, the impact of the copolymer structural properties on key microbubble characteristics (i.e., concentration, mean diameter and acoustic response) remains poorly understood. Therefore, we hypothesize that the copolymer structure affects its capacity to form micelle-like nanoaggregates, protein-copolymer hybrids, and microbubble shells, ultimately influencing the physicochemical and acoustic properties of the microbubbles. Here we evaluate the production and performance of BSA@P(VP–AA) microbubbles synthesized using a series of P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weight cutoffs between 3.5 and 15 kDa. Both simulation and experimental data demonstrate that interactions between BSA and the copolymers significantly influence the performance of the resulting microbubbles across the library of 60 formulations. The introduction of –C8H17 terminated copolymers into microbubble shells resulted in up to 200-fold higher concentration, 7-fold greater acoustic response, and 5-fold longer ultrasound contrast enhancement compared to plain BSA microbubbles. The enhanced acoustic performance was sustained during in vivo cardiac ultrasound imaging, without altering liver accumulation after copolymer introduction. These findings underscore how optimizing copolymer structure (specifically the terminal end group and molecular weight) can tailor the formation and performance of protein-copolymer-coated microbubbles, offering valuable insights for designing ultrasound contrast agents. [Display omitted] •Microbubble (MB) synthesis and ultrasound (US) response can be improved by incorporating protein-copolymer hybrids into MB.•P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weights between 3.5 and 15 kDa were synthesized.•The P(VP–AA) copolymer structure influences its ability to form nanoaggregates, protein-copolymer hybrids, and MB shells.•C8H17-bearing P(VP–AA) copolymers yielded MB with 200-fold higher concentration, and 7-fold greater US signal compared to BSA MB.•Improved acoustic performance was maintained during in vivo cardiac US imaging, preserving strong signal over 5 minutes.</description><identifier>ISSN: 2772-9508</identifier><identifier>EISSN: 2772-9508</identifier><identifier>DOI: 10.1016/j.bioadv.2024.214074</identifier><identifier>PMID: 39447238</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acrylates - chemistry ; Animals ; Bovine serum albumin ; Cardiac imaging ; Cattle ; Contrast agents ; Contrast Media - chemistry ; Microbubbles ; Poly(vinyl pyrrolidone) ; Polymers - chemistry ; Protein-polymer hybrids ; Pyrrolidinones - chemistry ; Serum Albumin, Bovine - chemistry ; Ultrasonography - methods ; Ultrasound</subject><ispartof>Biomaterials advances, 2025-01, Vol.166, p.214074, Article 214074</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-13b694872d7b4237807ec2545fd4c7e9dcf68e3bfe894e0bf860bbb9540022733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2772950824003170$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3547,27922,27923,45778</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39447238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Estifeeva, Tatiana M.</creatorcontrib><creatorcontrib>Nechaeva, Anna M.</creatorcontrib><creatorcontrib>Le-Deygen, Irina M.</creatorcontrib><creatorcontrib>Adelyanov, Artem M.</creatorcontrib><creatorcontrib>Grigoryan, Ilya V.</creatorcontrib><creatorcontrib>Petrovskii, Vladislav S.</creatorcontrib><creatorcontrib>Potemkin, Igor I.</creatorcontrib><creatorcontrib>Abramov, Alexander A.</creatorcontrib><creatorcontrib>Prosvirnin, Anton V.</creatorcontrib><creatorcontrib>Sencha, Ekaterina A.</creatorcontrib><creatorcontrib>Borozdenko, Denis A.</creatorcontrib><creatorcontrib>Barmin, Roman A.</creatorcontrib><creatorcontrib>Mezhuev, Yaroslav O.</creatorcontrib><creatorcontrib>Gorin, Dmitry A.</creatorcontrib><creatorcontrib>Rudakovskaya, Polina G.</creatorcontrib><title>Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure</title><title>Biomaterials advances</title><addtitle>Biomater Adv</addtitle><description>While albumin-coated microbubbles are routine contrast agents for ultrasound imaging, their short duration of contrast enhancement limits their use, yet can be improved by incorporating protein-copolymer hybrids into microbubble shells. The incorporation of N-vinyl-2-pyrrolidone and acrylic acid copolymer (P(VP–AA)) has been shown to enhance the performance of bovine serum albumin (BSA)-coated microbubbles. However, the impact of the copolymer structural properties on key microbubble characteristics (i.e., concentration, mean diameter and acoustic response) remains poorly understood. Therefore, we hypothesize that the copolymer structure affects its capacity to form micelle-like nanoaggregates, protein-copolymer hybrids, and microbubble shells, ultimately influencing the physicochemical and acoustic properties of the microbubbles. Here we evaluate the production and performance of BSA@P(VP–AA) microbubbles synthesized using a series of P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weight cutoffs between 3.5 and 15 kDa. Both simulation and experimental data demonstrate that interactions between BSA and the copolymers significantly influence the performance of the resulting microbubbles across the library of 60 formulations. The introduction of –C8H17 terminated copolymers into microbubble shells resulted in up to 200-fold higher concentration, 7-fold greater acoustic response, and 5-fold longer ultrasound contrast enhancement compared to plain BSA microbubbles. The enhanced acoustic performance was sustained during in vivo cardiac ultrasound imaging, without altering liver accumulation after copolymer introduction. These findings underscore how optimizing copolymer structure (specifically the terminal end group and molecular weight) can tailor the formation and performance of protein-copolymer-coated microbubbles, offering valuable insights for designing ultrasound contrast agents. [Display omitted] •Microbubble (MB) synthesis and ultrasound (US) response can be improved by incorporating protein-copolymer hybrids into MB.•P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weights between 3.5 and 15 kDa were synthesized.•The P(VP–AA) copolymer structure influences its ability to form nanoaggregates, protein-copolymer hybrids, and MB shells.•C8H17-bearing P(VP–AA) copolymers yielded MB with 200-fold higher concentration, and 7-fold greater US signal compared to BSA MB.•Improved acoustic performance was maintained during in vivo cardiac US imaging, preserving strong signal over 5 minutes.</description><subject>Acrylates - chemistry</subject><subject>Animals</subject><subject>Bovine serum albumin</subject><subject>Cardiac imaging</subject><subject>Cattle</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Microbubbles</subject><subject>Poly(vinyl pyrrolidone)</subject><subject>Polymers - chemistry</subject><subject>Protein-polymer hybrids</subject><subject>Pyrrolidinones - chemistry</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Ultrasonography - methods</subject><subject>Ultrasound</subject><issn>2772-9508</issn><issn>2772-9508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVoSUKSf1CKj-nBW33Zsi-FEvoFgV6Ss7Ck8UaLLG1H1oL_fb04LT31NHN43hneh5B3jO4YZe3Hw874NLjTjlMud5xJquQFueZK8bpvaPfmn_2K3OV8oJQKLtqmEZfkSvRSKi66a1Kew4xDTiW66ohpBh9rm44pLBNgNXmLyRRjAlTBGxxwqSDufQRAH_fV_IKp7F-qM39_8nEJxwUxBe9ShPVOPVhcgrfVYL37UOUZi50Lwi15Ow4hw93rvCHPX788PXyvH39--_Hw-bG2XLK5ZsK0vewUd8pILlRHFVjeyGZ00ironR3bDoQZoeslUDN2LTXG9I2klHMlxA253-6u1X4VyLOefLYQwhAhlawF47TpFVPdisoNXRvnjDDqI_ppLawZ1Wfn-qA35_rsXG_O19j71w_FTOD-hv4YXoFPGwBrz5MH1Nl6iBacR7Czdsn__8NvICaXMw</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Estifeeva, Tatiana M.</creator><creator>Nechaeva, Anna M.</creator><creator>Le-Deygen, Irina M.</creator><creator>Adelyanov, Artem M.</creator><creator>Grigoryan, Ilya V.</creator><creator>Petrovskii, Vladislav S.</creator><creator>Potemkin, Igor I.</creator><creator>Abramov, Alexander A.</creator><creator>Prosvirnin, Anton V.</creator><creator>Sencha, Ekaterina A.</creator><creator>Borozdenko, Denis A.</creator><creator>Barmin, Roman A.</creator><creator>Mezhuev, Yaroslav O.</creator><creator>Gorin, Dmitry A.</creator><creator>Rudakovskaya, Polina G.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202501</creationdate><title>Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure</title><author>Estifeeva, Tatiana M. ; Nechaeva, Anna M. ; Le-Deygen, Irina M. ; Adelyanov, Artem M. ; Grigoryan, Ilya V. ; Petrovskii, Vladislav S. ; Potemkin, Igor I. ; Abramov, Alexander A. ; Prosvirnin, Anton V. ; Sencha, Ekaterina A. ; Borozdenko, Denis A. ; Barmin, Roman A. ; Mezhuev, Yaroslav O. ; Gorin, Dmitry A. ; Rudakovskaya, Polina G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-13b694872d7b4237807ec2545fd4c7e9dcf68e3bfe894e0bf860bbb9540022733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acrylates - chemistry</topic><topic>Animals</topic><topic>Bovine serum albumin</topic><topic>Cardiac imaging</topic><topic>Cattle</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Microbubbles</topic><topic>Poly(vinyl pyrrolidone)</topic><topic>Polymers - chemistry</topic><topic>Protein-polymer hybrids</topic><topic>Pyrrolidinones - chemistry</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Ultrasonography - methods</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Estifeeva, Tatiana M.</creatorcontrib><creatorcontrib>Nechaeva, Anna M.</creatorcontrib><creatorcontrib>Le-Deygen, Irina M.</creatorcontrib><creatorcontrib>Adelyanov, Artem M.</creatorcontrib><creatorcontrib>Grigoryan, Ilya V.</creatorcontrib><creatorcontrib>Petrovskii, Vladislav S.</creatorcontrib><creatorcontrib>Potemkin, Igor I.</creatorcontrib><creatorcontrib>Abramov, Alexander A.</creatorcontrib><creatorcontrib>Prosvirnin, Anton V.</creatorcontrib><creatorcontrib>Sencha, Ekaterina A.</creatorcontrib><creatorcontrib>Borozdenko, Denis A.</creatorcontrib><creatorcontrib>Barmin, Roman A.</creatorcontrib><creatorcontrib>Mezhuev, Yaroslav O.</creatorcontrib><creatorcontrib>Gorin, Dmitry A.</creatorcontrib><creatorcontrib>Rudakovskaya, Polina G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Estifeeva, Tatiana M.</au><au>Nechaeva, Anna M.</au><au>Le-Deygen, Irina M.</au><au>Adelyanov, Artem M.</au><au>Grigoryan, Ilya V.</au><au>Petrovskii, Vladislav S.</au><au>Potemkin, Igor I.</au><au>Abramov, Alexander A.</au><au>Prosvirnin, Anton V.</au><au>Sencha, Ekaterina A.</au><au>Borozdenko, Denis A.</au><au>Barmin, Roman A.</au><au>Mezhuev, Yaroslav O.</au><au>Gorin, Dmitry A.</au><au>Rudakovskaya, Polina G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure</atitle><jtitle>Biomaterials advances</jtitle><addtitle>Biomater Adv</addtitle><date>2025-01</date><risdate>2025</risdate><volume>166</volume><spage>214074</spage><pages>214074-</pages><artnum>214074</artnum><issn>2772-9508</issn><eissn>2772-9508</eissn><abstract>While albumin-coated microbubbles are routine contrast agents for ultrasound imaging, their short duration of contrast enhancement limits their use, yet can be improved by incorporating protein-copolymer hybrids into microbubble shells. The incorporation of N-vinyl-2-pyrrolidone and acrylic acid copolymer (P(VP–AA)) has been shown to enhance the performance of bovine serum albumin (BSA)-coated microbubbles. However, the impact of the copolymer structural properties on key microbubble characteristics (i.e., concentration, mean diameter and acoustic response) remains poorly understood. Therefore, we hypothesize that the copolymer structure affects its capacity to form micelle-like nanoaggregates, protein-copolymer hybrids, and microbubble shells, ultimately influencing the physicochemical and acoustic properties of the microbubbles. Here we evaluate the production and performance of BSA@P(VP–AA) microbubbles synthesized using a series of P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weight cutoffs between 3.5 and 15 kDa. Both simulation and experimental data demonstrate that interactions between BSA and the copolymers significantly influence the performance of the resulting microbubbles across the library of 60 formulations. The introduction of –C8H17 terminated copolymers into microbubble shells resulted in up to 200-fold higher concentration, 7-fold greater acoustic response, and 5-fold longer ultrasound contrast enhancement compared to plain BSA microbubbles. The enhanced acoustic performance was sustained during in vivo cardiac ultrasound imaging, without altering liver accumulation after copolymer introduction. These findings underscore how optimizing copolymer structure (specifically the terminal end group and molecular weight) can tailor the formation and performance of protein-copolymer-coated microbubbles, offering valuable insights for designing ultrasound contrast agents. [Display omitted] •Microbubble (MB) synthesis and ultrasound (US) response can be improved by incorporating protein-copolymer hybrids into MB.•P(VP–AA) copolymers with –C8H17 and –C18H37 end groups and molecular weights between 3.5 and 15 kDa were synthesized.•The P(VP–AA) copolymer structure influences its ability to form nanoaggregates, protein-copolymer hybrids, and MB shells.•C8H17-bearing P(VP–AA) copolymers yielded MB with 200-fold higher concentration, and 7-fold greater US signal compared to BSA MB.•Improved acoustic performance was maintained during in vivo cardiac US imaging, preserving strong signal over 5 minutes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39447238</pmid><doi>10.1016/j.bioadv.2024.214074</doi></addata></record>
fulltext fulltext
identifier ISSN: 2772-9508
ispartof Biomaterials advances, 2025-01, Vol.166, p.214074, Article 214074
issn 2772-9508
2772-9508
language eng
recordid cdi_proquest_miscellaneous_3120597178
source ScienceDirect (Online service)
subjects Acrylates - chemistry
Animals
Bovine serum albumin
Cardiac imaging
Cattle
Contrast agents
Contrast Media - chemistry
Microbubbles
Poly(vinyl pyrrolidone)
Polymers - chemistry
Protein-polymer hybrids
Pyrrolidinones - chemistry
Serum Albumin, Bovine - chemistry
Ultrasonography - methods
Ultrasound
title Ultrasound protein-copolymer microbubble library engineering through poly(vinylpyrrolidone-co-acrylic acid) structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20protein-copolymer%20microbubble%20library%20engineering%20through%20poly(vinylpyrrolidone-co-acrylic%20acid)%20structure&rft.jtitle=Biomaterials%20advances&rft.au=Estifeeva,%20Tatiana%20M.&rft.date=2025-01&rft.volume=166&rft.spage=214074&rft.pages=214074-&rft.artnum=214074&rft.issn=2772-9508&rft.eissn=2772-9508&rft_id=info:doi/10.1016/j.bioadv.2024.214074&rft_dat=%3Cproquest_cross%3E3120597178%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c241t-13b694872d7b4237807ec2545fd4c7e9dcf68e3bfe894e0bf860bbb9540022733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120597178&rft_id=info:pmid/39447238&rfr_iscdi=true