Loading…

Impact of non-contrast-enhanced imaging input sequences on the generation of virtual contrast-enhanced breast MRI scans using neural network

To investigate how different combinations of T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted imaging (DWI) impact the performance of virtual contrast-enhanced (vCE) breast MRI. The IRB-approved, retrospective study included 1064 multiparametric breast MRI scans (age: 52 ± 12 years) obta...

Full description

Saved in:
Bibliographic Details
Published in:European radiology 2024-10
Main Authors: Liebert, Andrzej, Schreiter, Hannes, Kapsner, Lorenz A, Eberle, Jessica, Ehring, Chris M, Hadler, Dominique, Brock, Luise, Erber, Ramona, Emons, Julius, Laun, Frederik B, Uder, Michael, Wenkel, Evelyn, Ohlmeyer, Sabine, Bickelhaupt, Sebastian
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate how different combinations of T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted imaging (DWI) impact the performance of virtual contrast-enhanced (vCE) breast MRI. The IRB-approved, retrospective study included 1064 multiparametric breast MRI scans (age: 52 ± 12 years) obtained from 2017 to 2020 (single site, two 3-T MRI). Eleven independent neural networks were trained to derive vCE images from varying input combinations of T1w, T2w, and multi-b-value DWI sequences (b-value = 50-1500 s/mm ). Three readers evaluated the vCE images with regard to qualitative scores of diagnostic image quality, image sharpness, satisfaction with contrast/signal-to-noise ratio, and lesion/non-mass enhancement conspicuity. Quantitative metrics (SSIM, PSNR, NRMSE, and median symmetrical accuracy) were analyzed and statistically compared between the input combinations for the full breast volume and both enhancing and non-enhancing target findings. The independent test set consisted of 187 cases. The quantitative metrics significantly improved in target findings when multi-b-value DWI sequences were included during vCE training (p  0.05) were observed for the quantitative metrics on the full breast volume when comparing input combinations including T1w. Using T1w and DWI acquisitions during vCE training is necessary to achieve high satisfaction with contrast/SNR and good conspicuity of the enhancing findings. The input combination of T1w, T2w, and DWI sequences with three b-values showed the best qualitative performance. vCE breast MRI performance is significantly influenced by input sequences. Quantitative metrics and visual quality of vCE images significantly benefit when multi b-value DWI is added to morphologic T1w-/T2w sequences as input for model training. Question How do different MRI sequences impact the performance of virtual contrast-enhanced (vCE) breast MRI? Findings The input combination of T1-weighted, T2-weighted, and diffusion-weighted imaging sequences with three b-values showed the best qualitative performance. Clinical relevance While in the future neural networks providing virtual contrast-enhanced images might further improve accessibility to breast MRI, the significant influence of input data needs to be considered during translational research.
ISSN:1432-1084
1432-1084
DOI:10.1007/s00330-024-11142-3