Loading…
Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma
To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture. A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training...
Saved in:
Published in: | Head & neck 2024-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Head & neck |
container_volume | |
creator | Sousa-Neto, Sebastião Silvério Nakamura, Thaís Cerqueira Reis Giraldo-Roldan, Daniela Dos Santos, Giovanna Calabrese Fonseca, Felipe Paiva de Cáceres, Cinthia Verónica Bardález López Rangel, Ana Lúcia Carrinho Ayroza Martins, Manoela Domingues Martins, Marco Antonio Trevizani Gabriel, Amanda De Farias Zanella, Virgilio Gonzales Santos-Silva, Alan Roger Lopes, Marcio Ajudarte Kowalski, Luiz Paulo Araújo, Anna Luíza Damaceno Moraes, Matheus Cardoso Vargas, Pablo Agustin |
description | To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture.
A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97).
The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors. |
doi_str_mv | 10.1002/hed.27971 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121281118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121281118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3</originalsourceid><addsrcrecordid>eNptkclOwzAQhi0EoqVw4AWQj3BI8da4OZa0LFJZDnCOHHtCA0kc7KTAk_C6JC29cZrt0_ya-RE6pWRMCWGXKzBjJiNJ99CQkkgGhAu53-eCB5xIMUBH3r8RQngo2CEa8EiEnDA5RD9zWENh6xKqBqvK4MVaFa1qclthm2GFY1utbdH2DVXgB2jdJjSf1r3jzDp8n2tnvbZ1rvE8V6-V9bnHVx0BUOGnAmxpXb3qpjMDlS3VRiZWTuebavEV_AMdo4NMFR5O_uIIvVwvnuPbYPl4cxfPloGmctIEhrKpVpRxKYxQOpQEpoYZJTNBWTThYcoIpMaADjOAkE9Sk0VCMmOyMASt-Qidb_fWzn604JukzL2GolAV2NYnnLJOglI67dCLLdrf6x1kSe3yUrnvhJKk9yHpfEg2PnTs2d_aNi277o7cPZ7_Ak-ghtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121281118</pqid></control><display><type>article</type><title>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</title><source>Wiley</source><creator>Sousa-Neto, Sebastião Silvério ; Nakamura, Thaís Cerqueira Reis ; Giraldo-Roldan, Daniela ; Dos Santos, Giovanna Calabrese ; Fonseca, Felipe Paiva ; de Cáceres, Cinthia Verónica Bardález López ; Rangel, Ana Lúcia Carrinho Ayroza ; Martins, Manoela Domingues ; Martins, Marco Antonio Trevizani ; Gabriel, Amanda De Farias ; Zanella, Virgilio Gonzales ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Kowalski, Luiz Paulo ; Araújo, Anna Luíza Damaceno ; Moraes, Matheus Cardoso ; Vargas, Pablo Agustin</creator><creatorcontrib>Sousa-Neto, Sebastião Silvério ; Nakamura, Thaís Cerqueira Reis ; Giraldo-Roldan, Daniela ; Dos Santos, Giovanna Calabrese ; Fonseca, Felipe Paiva ; de Cáceres, Cinthia Verónica Bardález López ; Rangel, Ana Lúcia Carrinho Ayroza ; Martins, Manoela Domingues ; Martins, Marco Antonio Trevizani ; Gabriel, Amanda De Farias ; Zanella, Virgilio Gonzales ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Kowalski, Luiz Paulo ; Araújo, Anna Luíza Damaceno ; Moraes, Matheus Cardoso ; Vargas, Pablo Agustin</creatorcontrib><description>To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture.
A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97).
The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors.</description><identifier>ISSN: 1043-3074</identifier><identifier>ISSN: 1097-0347</identifier><identifier>EISSN: 1097-0347</identifier><identifier>DOI: 10.1002/hed.27971</identifier><identifier>PMID: 39463027</identifier><language>eng</language><publisher>United States</publisher><ispartof>Head & neck, 2024-10</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3</cites><orcidid>0000-0002-8910-5815 ; 0000-0003-1080-358X ; 0000-0002-0481-156X ; 0000-0002-6657-4547 ; 0000-0002-9032-2067 ; 0000-0002-3725-8051 ; 0000-0001-8890-8723 ; 0000-0003-1840-4911 ; 0000-0002-6019-6653 ; 0000-0003-2040-6617 ; 0000-0001-7150-3025 ; 0000-0003-0895-7125 ; 0000-0001-8662-5965 ; 0000-0001-5721-9968 ; 0009-0004-1040-8058 ; 0000-0001-6073-1807 ; 0000-0001-6677-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39463027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sousa-Neto, Sebastião Silvério</creatorcontrib><creatorcontrib>Nakamura, Thaís Cerqueira Reis</creatorcontrib><creatorcontrib>Giraldo-Roldan, Daniela</creatorcontrib><creatorcontrib>Dos Santos, Giovanna Calabrese</creatorcontrib><creatorcontrib>Fonseca, Felipe Paiva</creatorcontrib><creatorcontrib>de Cáceres, Cinthia Verónica Bardález López</creatorcontrib><creatorcontrib>Rangel, Ana Lúcia Carrinho Ayroza</creatorcontrib><creatorcontrib>Martins, Manoela Domingues</creatorcontrib><creatorcontrib>Martins, Marco Antonio Trevizani</creatorcontrib><creatorcontrib>Gabriel, Amanda De Farias</creatorcontrib><creatorcontrib>Zanella, Virgilio Gonzales</creatorcontrib><creatorcontrib>Santos-Silva, Alan Roger</creatorcontrib><creatorcontrib>Lopes, Marcio Ajudarte</creatorcontrib><creatorcontrib>Kowalski, Luiz Paulo</creatorcontrib><creatorcontrib>Araújo, Anna Luíza Damaceno</creatorcontrib><creatorcontrib>Moraes, Matheus Cardoso</creatorcontrib><creatorcontrib>Vargas, Pablo Agustin</creatorcontrib><title>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</title><title>Head & neck</title><addtitle>Head Neck</addtitle><description>To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture.
A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97).
The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors.</description><issn>1043-3074</issn><issn>1097-0347</issn><issn>1097-0347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkclOwzAQhi0EoqVw4AWQj3BI8da4OZa0LFJZDnCOHHtCA0kc7KTAk_C6JC29cZrt0_ya-RE6pWRMCWGXKzBjJiNJ99CQkkgGhAu53-eCB5xIMUBH3r8RQngo2CEa8EiEnDA5RD9zWENh6xKqBqvK4MVaFa1qclthm2GFY1utbdH2DVXgB2jdJjSf1r3jzDp8n2tnvbZ1rvE8V6-V9bnHVx0BUOGnAmxpXb3qpjMDlS3VRiZWTuebavEV_AMdo4NMFR5O_uIIvVwvnuPbYPl4cxfPloGmctIEhrKpVpRxKYxQOpQEpoYZJTNBWTThYcoIpMaADjOAkE9Sk0VCMmOyMASt-Qidb_fWzn604JukzL2GolAV2NYnnLJOglI67dCLLdrf6x1kSe3yUrnvhJKk9yHpfEg2PnTs2d_aNi277o7cPZ7_Ak-ghtM</recordid><startdate>20241027</startdate><enddate>20241027</enddate><creator>Sousa-Neto, Sebastião Silvério</creator><creator>Nakamura, Thaís Cerqueira Reis</creator><creator>Giraldo-Roldan, Daniela</creator><creator>Dos Santos, Giovanna Calabrese</creator><creator>Fonseca, Felipe Paiva</creator><creator>de Cáceres, Cinthia Verónica Bardález López</creator><creator>Rangel, Ana Lúcia Carrinho Ayroza</creator><creator>Martins, Manoela Domingues</creator><creator>Martins, Marco Antonio Trevizani</creator><creator>Gabriel, Amanda De Farias</creator><creator>Zanella, Virgilio Gonzales</creator><creator>Santos-Silva, Alan Roger</creator><creator>Lopes, Marcio Ajudarte</creator><creator>Kowalski, Luiz Paulo</creator><creator>Araújo, Anna Luíza Damaceno</creator><creator>Moraes, Matheus Cardoso</creator><creator>Vargas, Pablo Agustin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8910-5815</orcidid><orcidid>https://orcid.org/0000-0003-1080-358X</orcidid><orcidid>https://orcid.org/0000-0002-0481-156X</orcidid><orcidid>https://orcid.org/0000-0002-6657-4547</orcidid><orcidid>https://orcid.org/0000-0002-9032-2067</orcidid><orcidid>https://orcid.org/0000-0002-3725-8051</orcidid><orcidid>https://orcid.org/0000-0001-8890-8723</orcidid><orcidid>https://orcid.org/0000-0003-1840-4911</orcidid><orcidid>https://orcid.org/0000-0002-6019-6653</orcidid><orcidid>https://orcid.org/0000-0003-2040-6617</orcidid><orcidid>https://orcid.org/0000-0001-7150-3025</orcidid><orcidid>https://orcid.org/0000-0003-0895-7125</orcidid><orcidid>https://orcid.org/0000-0001-8662-5965</orcidid><orcidid>https://orcid.org/0000-0001-5721-9968</orcidid><orcidid>https://orcid.org/0009-0004-1040-8058</orcidid><orcidid>https://orcid.org/0000-0001-6073-1807</orcidid><orcidid>https://orcid.org/0000-0001-6677-0065</orcidid></search><sort><creationdate>20241027</creationdate><title>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</title><author>Sousa-Neto, Sebastião Silvério ; Nakamura, Thaís Cerqueira Reis ; Giraldo-Roldan, Daniela ; Dos Santos, Giovanna Calabrese ; Fonseca, Felipe Paiva ; de Cáceres, Cinthia Verónica Bardález López ; Rangel, Ana Lúcia Carrinho Ayroza ; Martins, Manoela Domingues ; Martins, Marco Antonio Trevizani ; Gabriel, Amanda De Farias ; Zanella, Virgilio Gonzales ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Kowalski, Luiz Paulo ; Araújo, Anna Luíza Damaceno ; Moraes, Matheus Cardoso ; Vargas, Pablo Agustin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa-Neto, Sebastião Silvério</creatorcontrib><creatorcontrib>Nakamura, Thaís Cerqueira Reis</creatorcontrib><creatorcontrib>Giraldo-Roldan, Daniela</creatorcontrib><creatorcontrib>Dos Santos, Giovanna Calabrese</creatorcontrib><creatorcontrib>Fonseca, Felipe Paiva</creatorcontrib><creatorcontrib>de Cáceres, Cinthia Verónica Bardález López</creatorcontrib><creatorcontrib>Rangel, Ana Lúcia Carrinho Ayroza</creatorcontrib><creatorcontrib>Martins, Manoela Domingues</creatorcontrib><creatorcontrib>Martins, Marco Antonio Trevizani</creatorcontrib><creatorcontrib>Gabriel, Amanda De Farias</creatorcontrib><creatorcontrib>Zanella, Virgilio Gonzales</creatorcontrib><creatorcontrib>Santos-Silva, Alan Roger</creatorcontrib><creatorcontrib>Lopes, Marcio Ajudarte</creatorcontrib><creatorcontrib>Kowalski, Luiz Paulo</creatorcontrib><creatorcontrib>Araújo, Anna Luíza Damaceno</creatorcontrib><creatorcontrib>Moraes, Matheus Cardoso</creatorcontrib><creatorcontrib>Vargas, Pablo Agustin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Head & neck</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa-Neto, Sebastião Silvério</au><au>Nakamura, Thaís Cerqueira Reis</au><au>Giraldo-Roldan, Daniela</au><au>Dos Santos, Giovanna Calabrese</au><au>Fonseca, Felipe Paiva</au><au>de Cáceres, Cinthia Verónica Bardález López</au><au>Rangel, Ana Lúcia Carrinho Ayroza</au><au>Martins, Manoela Domingues</au><au>Martins, Marco Antonio Trevizani</au><au>Gabriel, Amanda De Farias</au><au>Zanella, Virgilio Gonzales</au><au>Santos-Silva, Alan Roger</au><au>Lopes, Marcio Ajudarte</au><au>Kowalski, Luiz Paulo</au><au>Araújo, Anna Luíza Damaceno</au><au>Moraes, Matheus Cardoso</au><au>Vargas, Pablo Agustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</atitle><jtitle>Head & neck</jtitle><addtitle>Head Neck</addtitle><date>2024-10-27</date><risdate>2024</risdate><issn>1043-3074</issn><issn>1097-0347</issn><eissn>1097-0347</eissn><abstract>To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture.
A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97).
The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors.</abstract><cop>United States</cop><pmid>39463027</pmid><doi>10.1002/hed.27971</doi><orcidid>https://orcid.org/0000-0002-8910-5815</orcidid><orcidid>https://orcid.org/0000-0003-1080-358X</orcidid><orcidid>https://orcid.org/0000-0002-0481-156X</orcidid><orcidid>https://orcid.org/0000-0002-6657-4547</orcidid><orcidid>https://orcid.org/0000-0002-9032-2067</orcidid><orcidid>https://orcid.org/0000-0002-3725-8051</orcidid><orcidid>https://orcid.org/0000-0001-8890-8723</orcidid><orcidid>https://orcid.org/0000-0003-1840-4911</orcidid><orcidid>https://orcid.org/0000-0002-6019-6653</orcidid><orcidid>https://orcid.org/0000-0003-2040-6617</orcidid><orcidid>https://orcid.org/0000-0001-7150-3025</orcidid><orcidid>https://orcid.org/0000-0003-0895-7125</orcidid><orcidid>https://orcid.org/0000-0001-8662-5965</orcidid><orcidid>https://orcid.org/0000-0001-5721-9968</orcidid><orcidid>https://orcid.org/0009-0004-1040-8058</orcidid><orcidid>https://orcid.org/0000-0001-6073-1807</orcidid><orcidid>https://orcid.org/0000-0001-6677-0065</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-3074 |
ispartof | Head & neck, 2024-10 |
issn | 1043-3074 1097-0347 1097-0347 |
language | eng |
recordid | cdi_proquest_miscellaneous_3121281118 |
source | Wiley |
title | Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Evaluation%20of%20a%20Convolutional%20Neural%20Network%20for%20Microscopic%20Diagnosis%20Between%20Pleomorphic%20Adenoma%20and%20Carcinoma%20Ex-Pleomorphic%20Adenoma&rft.jtitle=Head%20&%20neck&rft.au=Sousa-Neto,%20Sebasti%C3%A3o%20Silv%C3%A9rio&rft.date=2024-10-27&rft.issn=1043-3074&rft.eissn=1097-0347&rft_id=info:doi/10.1002/hed.27971&rft_dat=%3Cproquest_cross%3E3121281118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121281118&rft_id=info:pmid/39463027&rfr_iscdi=true |