Loading…

Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma

To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture. A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training...

Full description

Saved in:
Bibliographic Details
Published in:Head & neck 2024-10
Main Authors: Sousa-Neto, Sebastião Silvério, Nakamura, Thaís Cerqueira Reis, Giraldo-Roldan, Daniela, Dos Santos, Giovanna Calabrese, Fonseca, Felipe Paiva, de Cáceres, Cinthia Verónica Bardález López, Rangel, Ana Lúcia Carrinho Ayroza, Martins, Manoela Domingues, Martins, Marco Antonio Trevizani, Gabriel, Amanda De Farias, Zanella, Virgilio Gonzales, Santos-Silva, Alan Roger, Lopes, Marcio Ajudarte, Kowalski, Luiz Paulo, Araújo, Anna Luíza Damaceno, Moraes, Matheus Cardoso, Vargas, Pablo Agustin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3
container_end_page
container_issue
container_start_page
container_title Head & neck
container_volume
creator Sousa-Neto, Sebastião Silvério
Nakamura, Thaís Cerqueira Reis
Giraldo-Roldan, Daniela
Dos Santos, Giovanna Calabrese
Fonseca, Felipe Paiva
de Cáceres, Cinthia Verónica Bardález López
Rangel, Ana Lúcia Carrinho Ayroza
Martins, Manoela Domingues
Martins, Marco Antonio Trevizani
Gabriel, Amanda De Farias
Zanella, Virgilio Gonzales
Santos-Silva, Alan Roger
Lopes, Marcio Ajudarte
Kowalski, Luiz Paulo
Araújo, Anna Luíza Damaceno
Moraes, Matheus Cardoso
Vargas, Pablo Agustin
description To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture. A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97). The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors.
doi_str_mv 10.1002/hed.27971
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3121281118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121281118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3</originalsourceid><addsrcrecordid>eNptkclOwzAQhi0EoqVw4AWQj3BI8da4OZa0LFJZDnCOHHtCA0kc7KTAk_C6JC29cZrt0_ya-RE6pWRMCWGXKzBjJiNJ99CQkkgGhAu53-eCB5xIMUBH3r8RQngo2CEa8EiEnDA5RD9zWENh6xKqBqvK4MVaFa1qclthm2GFY1utbdH2DVXgB2jdJjSf1r3jzDp8n2tnvbZ1rvE8V6-V9bnHVx0BUOGnAmxpXb3qpjMDlS3VRiZWTuebavEV_AMdo4NMFR5O_uIIvVwvnuPbYPl4cxfPloGmctIEhrKpVpRxKYxQOpQEpoYZJTNBWTThYcoIpMaADjOAkE9Sk0VCMmOyMASt-Qidb_fWzn604JukzL2GolAV2NYnnLJOglI67dCLLdrf6x1kSe3yUrnvhJKk9yHpfEg2PnTs2d_aNi277o7cPZ7_Ak-ghtM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121281118</pqid></control><display><type>article</type><title>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</title><source>Wiley</source><creator>Sousa-Neto, Sebastião Silvério ; Nakamura, Thaís Cerqueira Reis ; Giraldo-Roldan, Daniela ; Dos Santos, Giovanna Calabrese ; Fonseca, Felipe Paiva ; de Cáceres, Cinthia Verónica Bardález López ; Rangel, Ana Lúcia Carrinho Ayroza ; Martins, Manoela Domingues ; Martins, Marco Antonio Trevizani ; Gabriel, Amanda De Farias ; Zanella, Virgilio Gonzales ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Kowalski, Luiz Paulo ; Araújo, Anna Luíza Damaceno ; Moraes, Matheus Cardoso ; Vargas, Pablo Agustin</creator><creatorcontrib>Sousa-Neto, Sebastião Silvério ; Nakamura, Thaís Cerqueira Reis ; Giraldo-Roldan, Daniela ; Dos Santos, Giovanna Calabrese ; Fonseca, Felipe Paiva ; de Cáceres, Cinthia Verónica Bardález López ; Rangel, Ana Lúcia Carrinho Ayroza ; Martins, Manoela Domingues ; Martins, Marco Antonio Trevizani ; Gabriel, Amanda De Farias ; Zanella, Virgilio Gonzales ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Kowalski, Luiz Paulo ; Araújo, Anna Luíza Damaceno ; Moraes, Matheus Cardoso ; Vargas, Pablo Agustin</creatorcontrib><description>To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture. A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97). The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors.</description><identifier>ISSN: 1043-3074</identifier><identifier>ISSN: 1097-0347</identifier><identifier>EISSN: 1097-0347</identifier><identifier>DOI: 10.1002/hed.27971</identifier><identifier>PMID: 39463027</identifier><language>eng</language><publisher>United States</publisher><ispartof>Head &amp; neck, 2024-10</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3</cites><orcidid>0000-0002-8910-5815 ; 0000-0003-1080-358X ; 0000-0002-0481-156X ; 0000-0002-6657-4547 ; 0000-0002-9032-2067 ; 0000-0002-3725-8051 ; 0000-0001-8890-8723 ; 0000-0003-1840-4911 ; 0000-0002-6019-6653 ; 0000-0003-2040-6617 ; 0000-0001-7150-3025 ; 0000-0003-0895-7125 ; 0000-0001-8662-5965 ; 0000-0001-5721-9968 ; 0009-0004-1040-8058 ; 0000-0001-6073-1807 ; 0000-0001-6677-0065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39463027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sousa-Neto, Sebastião Silvério</creatorcontrib><creatorcontrib>Nakamura, Thaís Cerqueira Reis</creatorcontrib><creatorcontrib>Giraldo-Roldan, Daniela</creatorcontrib><creatorcontrib>Dos Santos, Giovanna Calabrese</creatorcontrib><creatorcontrib>Fonseca, Felipe Paiva</creatorcontrib><creatorcontrib>de Cáceres, Cinthia Verónica Bardález López</creatorcontrib><creatorcontrib>Rangel, Ana Lúcia Carrinho Ayroza</creatorcontrib><creatorcontrib>Martins, Manoela Domingues</creatorcontrib><creatorcontrib>Martins, Marco Antonio Trevizani</creatorcontrib><creatorcontrib>Gabriel, Amanda De Farias</creatorcontrib><creatorcontrib>Zanella, Virgilio Gonzales</creatorcontrib><creatorcontrib>Santos-Silva, Alan Roger</creatorcontrib><creatorcontrib>Lopes, Marcio Ajudarte</creatorcontrib><creatorcontrib>Kowalski, Luiz Paulo</creatorcontrib><creatorcontrib>Araújo, Anna Luíza Damaceno</creatorcontrib><creatorcontrib>Moraes, Matheus Cardoso</creatorcontrib><creatorcontrib>Vargas, Pablo Agustin</creatorcontrib><title>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</title><title>Head &amp; neck</title><addtitle>Head Neck</addtitle><description>To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture. A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97). The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors.</description><issn>1043-3074</issn><issn>1097-0347</issn><issn>1097-0347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkclOwzAQhi0EoqVw4AWQj3BI8da4OZa0LFJZDnCOHHtCA0kc7KTAk_C6JC29cZrt0_ya-RE6pWRMCWGXKzBjJiNJ99CQkkgGhAu53-eCB5xIMUBH3r8RQngo2CEa8EiEnDA5RD9zWENh6xKqBqvK4MVaFa1qclthm2GFY1utbdH2DVXgB2jdJjSf1r3jzDp8n2tnvbZ1rvE8V6-V9bnHVx0BUOGnAmxpXb3qpjMDlS3VRiZWTuebavEV_AMdo4NMFR5O_uIIvVwvnuPbYPl4cxfPloGmctIEhrKpVpRxKYxQOpQEpoYZJTNBWTThYcoIpMaADjOAkE9Sk0VCMmOyMASt-Qidb_fWzn604JukzL2GolAV2NYnnLJOglI67dCLLdrf6x1kSe3yUrnvhJKk9yHpfEg2PnTs2d_aNi277o7cPZ7_Ak-ghtM</recordid><startdate>20241027</startdate><enddate>20241027</enddate><creator>Sousa-Neto, Sebastião Silvério</creator><creator>Nakamura, Thaís Cerqueira Reis</creator><creator>Giraldo-Roldan, Daniela</creator><creator>Dos Santos, Giovanna Calabrese</creator><creator>Fonseca, Felipe Paiva</creator><creator>de Cáceres, Cinthia Verónica Bardález López</creator><creator>Rangel, Ana Lúcia Carrinho Ayroza</creator><creator>Martins, Manoela Domingues</creator><creator>Martins, Marco Antonio Trevizani</creator><creator>Gabriel, Amanda De Farias</creator><creator>Zanella, Virgilio Gonzales</creator><creator>Santos-Silva, Alan Roger</creator><creator>Lopes, Marcio Ajudarte</creator><creator>Kowalski, Luiz Paulo</creator><creator>Araújo, Anna Luíza Damaceno</creator><creator>Moraes, Matheus Cardoso</creator><creator>Vargas, Pablo Agustin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8910-5815</orcidid><orcidid>https://orcid.org/0000-0003-1080-358X</orcidid><orcidid>https://orcid.org/0000-0002-0481-156X</orcidid><orcidid>https://orcid.org/0000-0002-6657-4547</orcidid><orcidid>https://orcid.org/0000-0002-9032-2067</orcidid><orcidid>https://orcid.org/0000-0002-3725-8051</orcidid><orcidid>https://orcid.org/0000-0001-8890-8723</orcidid><orcidid>https://orcid.org/0000-0003-1840-4911</orcidid><orcidid>https://orcid.org/0000-0002-6019-6653</orcidid><orcidid>https://orcid.org/0000-0003-2040-6617</orcidid><orcidid>https://orcid.org/0000-0001-7150-3025</orcidid><orcidid>https://orcid.org/0000-0003-0895-7125</orcidid><orcidid>https://orcid.org/0000-0001-8662-5965</orcidid><orcidid>https://orcid.org/0000-0001-5721-9968</orcidid><orcidid>https://orcid.org/0009-0004-1040-8058</orcidid><orcidid>https://orcid.org/0000-0001-6073-1807</orcidid><orcidid>https://orcid.org/0000-0001-6677-0065</orcidid></search><sort><creationdate>20241027</creationdate><title>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</title><author>Sousa-Neto, Sebastião Silvério ; Nakamura, Thaís Cerqueira Reis ; Giraldo-Roldan, Daniela ; Dos Santos, Giovanna Calabrese ; Fonseca, Felipe Paiva ; de Cáceres, Cinthia Verónica Bardález López ; Rangel, Ana Lúcia Carrinho Ayroza ; Martins, Manoela Domingues ; Martins, Marco Antonio Trevizani ; Gabriel, Amanda De Farias ; Zanella, Virgilio Gonzales ; Santos-Silva, Alan Roger ; Lopes, Marcio Ajudarte ; Kowalski, Luiz Paulo ; Araújo, Anna Luíza Damaceno ; Moraes, Matheus Cardoso ; Vargas, Pablo Agustin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa-Neto, Sebastião Silvério</creatorcontrib><creatorcontrib>Nakamura, Thaís Cerqueira Reis</creatorcontrib><creatorcontrib>Giraldo-Roldan, Daniela</creatorcontrib><creatorcontrib>Dos Santos, Giovanna Calabrese</creatorcontrib><creatorcontrib>Fonseca, Felipe Paiva</creatorcontrib><creatorcontrib>de Cáceres, Cinthia Verónica Bardález López</creatorcontrib><creatorcontrib>Rangel, Ana Lúcia Carrinho Ayroza</creatorcontrib><creatorcontrib>Martins, Manoela Domingues</creatorcontrib><creatorcontrib>Martins, Marco Antonio Trevizani</creatorcontrib><creatorcontrib>Gabriel, Amanda De Farias</creatorcontrib><creatorcontrib>Zanella, Virgilio Gonzales</creatorcontrib><creatorcontrib>Santos-Silva, Alan Roger</creatorcontrib><creatorcontrib>Lopes, Marcio Ajudarte</creatorcontrib><creatorcontrib>Kowalski, Luiz Paulo</creatorcontrib><creatorcontrib>Araújo, Anna Luíza Damaceno</creatorcontrib><creatorcontrib>Moraes, Matheus Cardoso</creatorcontrib><creatorcontrib>Vargas, Pablo Agustin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Head &amp; neck</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa-Neto, Sebastião Silvério</au><au>Nakamura, Thaís Cerqueira Reis</au><au>Giraldo-Roldan, Daniela</au><au>Dos Santos, Giovanna Calabrese</au><au>Fonseca, Felipe Paiva</au><au>de Cáceres, Cinthia Verónica Bardález López</au><au>Rangel, Ana Lúcia Carrinho Ayroza</au><au>Martins, Manoela Domingues</au><au>Martins, Marco Antonio Trevizani</au><au>Gabriel, Amanda De Farias</au><au>Zanella, Virgilio Gonzales</au><au>Santos-Silva, Alan Roger</au><au>Lopes, Marcio Ajudarte</au><au>Kowalski, Luiz Paulo</au><au>Araújo, Anna Luíza Damaceno</au><au>Moraes, Matheus Cardoso</au><au>Vargas, Pablo Agustin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma</atitle><jtitle>Head &amp; neck</jtitle><addtitle>Head Neck</addtitle><date>2024-10-27</date><risdate>2024</risdate><issn>1043-3074</issn><issn>1097-0347</issn><eissn>1097-0347</eissn><abstract>To develop a model capable of distinguishing carcinoma ex-pleomorphic adenoma from pleomorphic adenoma using a convolutional neural network architecture. A cohort of 83 Brazilian patients, divided into carcinoma ex-pleomorphic adenoma (n = 42) and pleomorphic adenoma (n = 41), was used for training a convolutional neural network. The whole-slide images were annotated and fragmented into 743 869 (carcinoma ex-pleomorphic adenomas) and 211 714 (pleomorphic adenomas) patches, measuring 224 × 224 pixels. Training (80%), validation (10%), and test (10%) subsets were established. The Residual Neural Network (ResNet)-50 was chosen for its recognition and classification capabilities. The training and validation graphs, and parameters derived from the confusion matrix, were evaluated. The loss curve recorded 0.63, and the accuracy reached 0.93. Evaluated parameters included specificity (0.88), sensitivity (0.94), precision (0.96), F1 score (0.95), and area under the curve (0.97). The study underscores the potential of ResNet-50 in the microscopic diagnosis of carcinoma ex-pleomorphic adenoma. The developed model demonstrated strong learning potential, but exhibited partial limitations in generalization, as indicated by the validation curve. In summary, the study established a promising baseline despite limitations in model generalization. This indicates the need to refine methodologies, investigate new models, incorporate larger datasets, and encourage inter-institutional collaboration for comprehensive studies in salivary gland tumors.</abstract><cop>United States</cop><pmid>39463027</pmid><doi>10.1002/hed.27971</doi><orcidid>https://orcid.org/0000-0002-8910-5815</orcidid><orcidid>https://orcid.org/0000-0003-1080-358X</orcidid><orcidid>https://orcid.org/0000-0002-0481-156X</orcidid><orcidid>https://orcid.org/0000-0002-6657-4547</orcidid><orcidid>https://orcid.org/0000-0002-9032-2067</orcidid><orcidid>https://orcid.org/0000-0002-3725-8051</orcidid><orcidid>https://orcid.org/0000-0001-8890-8723</orcidid><orcidid>https://orcid.org/0000-0003-1840-4911</orcidid><orcidid>https://orcid.org/0000-0002-6019-6653</orcidid><orcidid>https://orcid.org/0000-0003-2040-6617</orcidid><orcidid>https://orcid.org/0000-0001-7150-3025</orcidid><orcidid>https://orcid.org/0000-0003-0895-7125</orcidid><orcidid>https://orcid.org/0000-0001-8662-5965</orcidid><orcidid>https://orcid.org/0000-0001-5721-9968</orcidid><orcidid>https://orcid.org/0009-0004-1040-8058</orcidid><orcidid>https://orcid.org/0000-0001-6073-1807</orcidid><orcidid>https://orcid.org/0000-0001-6677-0065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-3074
ispartof Head & neck, 2024-10
issn 1043-3074
1097-0347
1097-0347
language eng
recordid cdi_proquest_miscellaneous_3121281118
source Wiley
title Development and Evaluation of a Convolutional Neural Network for Microscopic Diagnosis Between Pleomorphic Adenoma and Carcinoma Ex-Pleomorphic Adenoma
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Evaluation%20of%20a%20Convolutional%20Neural%20Network%20for%20Microscopic%20Diagnosis%20Between%20Pleomorphic%20Adenoma%20and%20Carcinoma%20Ex-Pleomorphic%20Adenoma&rft.jtitle=Head%20&%20neck&rft.au=Sousa-Neto,%20Sebasti%C3%A3o%20Silv%C3%A9rio&rft.date=2024-10-27&rft.issn=1043-3074&rft.eissn=1097-0347&rft_id=info:doi/10.1002/hed.27971&rft_dat=%3Cproquest_cross%3E3121281118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c175t-d128ca12374d4ac670e8d2da7f4129536b20ebddec6fee635bdf9472ddf66ecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121281118&rft_id=info:pmid/39463027&rfr_iscdi=true