Loading…
In-Syringe Vortex-Assisted Liquid-Liquid Microextraction Based on Natural Deep Eutectic Solvent for Simultaneous Determination of the Two Anticancer Polyphenols Chrysin and Resveratrol
The simultaneous determination of multiple anticancer drugs in combination therapy poses a significant analytical challenge due to their complex nature and low concentrations. In this study, we propose an in-syringe vortex-assisted liquid-liquid microextraction (IS-VA-LLME), based on a green natural...
Saved in:
Published in: | Phytochemical analysis 2024-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The simultaneous determination of multiple anticancer drugs in combination therapy poses a significant analytical challenge due to their complex nature and low concentrations. In this study, we propose an in-syringe vortex-assisted liquid-liquid microextraction (IS-VA-LLME), based on a green natural deep eutectic solvent (NaDES) for the simultaneous determination of two coadministered anticancer drugs (resveratrol and chrysin) prior to the HPLC-UV analysis, for the first time. The key parameters affecting the extraction efficiency, such as extraction solvent, vortex time, pH, and ionic strength were optimized. Under optimal conditions, the method demonstrates good linearity over the range of 0.05-15.0 μg/mL for RVT and 0.50-15.0 μg/mL for CHR with low limits of detection (LODs) of 16.78 and 161.60 ng/mL for RVT and CHR, respectively, confirming the high sensitivity of the method. The interday and intraday precision values, expressed as %RSDs, are below 2.0%, indicating good repeatability and reproducibility. Furthermore, the proposed method could be efficiently applied for the determination of the two drugs in human plasma and river water. The obtained results show satisfactory % recoveries (97.80%-102.04%), highlighting the accuracy and reliability of the developed method. The sustainability of the method was comprehensively evaluated using seven different tools. In conclusion, the developed IS-VA-LLME-NaDES allows for enhanced extraction efficiency, reduced extraction time, and improved recovery of the target analytes. This method holds great promise for applications in clinical and environmental research, enabling the precise quantification of these anticancer drugs in complex matrices. |
---|---|
ISSN: | 0958-0344 1099-1565 1099-1565 |
DOI: | 10.1002/pca.3460 |