Loading…

Engineering Single Ni Sites on 3D Cage-like Cucurbitnuril Ligands for Efficient and Selective CO2 Photocatalytic Reduction

Solar-driven CO2 selective reduction with high conversion is a challenging task yet holds immense promise for both CO2 neutralization and green fuel production. Enhancing CO2 adsorption at the catalytic centre can trigger a highly efficient CO2 capture-to-conversion process. Herein, we introduce cuc...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2024-10, p.e202417384
Main Authors: Wang, Jingyi, Li, Xiyi, Chang, Chia-Hao, Zhang, Tianyu, Guan, Xuze, Liu, Qiong, Zhang, Liquan, Wen, Ping, Tang, Ivan, Zhang, Yuewen, Yang, Xiaofeng, Tang, Junwang, Lan, Yang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solar-driven CO2 selective reduction with high conversion is a challenging task yet holds immense promise for both CO2 neutralization and green fuel production. Enhancing CO2 adsorption at the catalytic centre can trigger a highly efficient CO2 capture-to-conversion process. Herein, we introduce cucurbit[n]urils (CB[n]), a new family of molecular ligands, as a key component in the creation of a 3D cage-like metal (nickel, Ni)-complex molecular co-catalyst (CB[7]-Ni) for photocatalysis. It exhibits an unprecedented CO yield rate of 72.1 μmol ⋅ h-1 with a high selectivity of 97.9 % under visible light irradiation. To verify the origin of the carbon source in the products, a straightforward isotopic tracing method is designed based on tandem reactions. The catalytic process commences with photoelectron transfer from Ru(bpy)3 2+ to the Ni2+ site, resulting in the reduction of Ni2+ to Ni+. The locally enriched CO2 molecules in the cage ligand CB[7] undergo selective reduction by the Ni+ nearby to form CO product. This work exemplifies the inspiring potential of ligand structure engineering in advancing the development of efficient unanchored molecular co-catalysts.Solar-driven CO2 selective reduction with high conversion is a challenging task yet holds immense promise for both CO2 neutralization and green fuel production. Enhancing CO2 adsorption at the catalytic centre can trigger a highly efficient CO2 capture-to-conversion process. Herein, we introduce cucurbit[n]urils (CB[n]), a new family of molecular ligands, as a key component in the creation of a 3D cage-like metal (nickel, Ni)-complex molecular co-catalyst (CB[7]-Ni) for photocatalysis. It exhibits an unprecedented CO yield rate of 72.1 μmol ⋅ h-1 with a high selectivity of 97.9 % under visible light irradiation. To verify the origin of the carbon source in the products, a straightforward isotopic tracing method is designed based on tandem reactions. The catalytic process commences with photoelectron transfer from Ru(bpy)3 2+ to the Ni2+ site, resulting in the reduction of Ni2+ to Ni+. The locally enriched CO2 molecules in the cage ligand CB[7] undergo selective reduction by the Ni+ nearby to form CO product. This work exemplifies the inspiring potential of ligand structure engineering in advancing the development of efficient unanchored molecular co-catalysts.
ISSN:1521-3773
1521-3773
DOI:10.1002/anie.202417384